In silico identification, characterization and expression profile of WUSCHEL-related homeobox (WOX) gene family in Vanilla planifolia

Authors

  • Thiveyarajan Victorathisayam Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
  • Madhvi Kanchan Department of Botany, Panjab University, Chandigarh 160 014, India
  • ` Himani Department of Botany, Panjab University, Chandigarh 160 014, India
  • Thandullu R. Suriyanarayanan Centre of Excellence in Life Sciences, School of Life Sciences, Bharathidasan University, Thiruchirappalli 620 024, Tamil Nadu, India
  • Jaspreet K. Sembi Department of Botany, Panjab University, Chandigarh 160 014, India
  • Thakku R. Ramkumar Department of Botany, Panjab University, Chandigarh 160 014, India

DOI:

https://doi.org/10.14719/pst.2020.7.2.722

Keywords:

Vanilla planifolia, WUSCHEL, WOX genes, Gene family characterization, Expression analysis

Abstract

Vanilla planifolia is an economically important orchid, which is being commercially exploited by the food industry for the highly valued secondary metabolite vanillin. WUSCHEL-related homeobox (WOX) gene family encodes for WUSCHEL-related homeobox (WOX) transcription factors that participate in embryogenesis, organogenesis and florigenesis and in diverse plant developmental processes as well. In the present study, we analysed V. planifolia transcriptome and identified 6 WOX (VpWOX) transcripts, that encode putative WOX (VpWOX) transcription factor proteins. Domain analysis was done which indicates the presence of helix-loop-helix-turn-helix which is identifying feature of WOX gene family proteins. We executed phylogenetic clustering for the VpWOX proteins with their counterpart from the model plant Arabidopsis thaliana (AtWOX) and other closely related orchid species, Phalaenopsis equestris (PeWOX), Dendrobium catenatum (DcWOX) and Apostasia shenzhenica (AsWOX) and established their clade specific grouping. Spatio-temporal expression profile for VpWOX genes was analysed for different plant developmental stages which shows that VpWOX13 is expressing uniformly in all the developmental stages whereas, other genes have tissue specific expression. Based on gene expression patterns, we selected four VpWOX proteins and carried out secondary and tertiary structural analysis which indicates the presence of alpha helix and beta turn in the protein structure. The present study provides basic understanding of the functioning of WOX gene family in V. planifolia and paves the path for functional characterization of selected VpWOX genes in planta and in heterologous system in future for commercial utilization.

Downloads

Download data is not yet available.

References

1. Laux T, Mayer KF, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122(1):87-96. https://doi.org/10.1371/journal.pone.0038161

2. Zuo J, Niu QW, Frugis G, Chua NH. The WUSCHEL gene promotes vegetative?to?embryonic transition in Arabidopsis. The Plant Journal. 2002;30(3):349-59. https://doi.org/10.1046/j.1365-313X.2002.01289.x

3. Arroyo-Herrera A, Gonzalez AK, Moo RC, Quiroz-Figueroa FR, Loyola-Vargas VM, Rodriguez-Zapata LC, et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture. 2008;94(2):171-80. https://doi.org/10.1007/s11240-008-9401-1

4. Bouchabke-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, et al. WUSCHEL overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports. 2013;32(5):675-86. https://doi.org/10.1007/s00299-013-1402-9

5. Kundu A. Vanillin biosynthetic pathways in plants. Planta. 2017;245(6):1069-78. https://doi.org/10.1007/s00425-017-2684-x

6. Gehring WJ, Affolter M, Bürglin T. Homeodomain proteins. Annual Review of Biochemistry. 1994;63(1):487-526. https://doi.org/10.1146/annurev.bi.63.070194.002415

7. Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M. Isolation and characterization of a rice WUSCHEL?type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. The Plant Journal. 2003;35(4):429-41. https://doi.org/10.1046/j.1365-313X.2003.01816.x

8. van der Graaff E, Laux T, Rensing SA. The WUS homeobox-containing (WOX) protein family. Genome Biology. 2009; 10(12): 248. https://doi.org/10.1186/gb-2009-10-12-248

9. Lian G, Ding Z, Wang Q, Zhang D, Xu J. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. The Scientific World Journal. 2014;2014. https://doi.org/10.1155/2014/534140

10. Costanzo E, Trehin C, Vandenbussche M. The role of WOX genes in flower development. Annals of Botany. 2014;114(7): 1545-53. https://doi.org/10.1093/aob/mcu123

11. Ramkumar TR, Kanchan M, Upadhyay SK, Sembi JK. Identification and characterization of WUSCHEL-related homeobox (WOX) gene family in economically important orchid species Phalaenopsis equestris and Dendrobium catenatum. Plant Gene. 2018;14:37-45. https://doi.org/10.1016/j.plgene.2018.04.004

12. Ramkumar TR, Kanchan M, Sembi JK. Genome wide characterization of WUSCHEL-related homeobox (WOX) gene family in Apostasia shenzhenica, a Primeval Orchid. Plant Science Today. 2020;7(2):164-171. https://doi.org/10.14719/pst.2020.7.2.703

13. Chao YT, Yen SH, Yeh JH, Chen WC, Shih MC. Orchidstra 2.0—a transcriptomics resource for the orchid family. Plant and Cell Physiology. 2017;58(1):e9-. https://doi.org/10.1093/pcp/pcw220

14. Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Research. 2012;41(D1):D344-7. https://doi.org/10.1093/nar/gks1067

15. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research. 1988;16(22):10881-90. https://doi.org/10.1093/nar/16.22.10881

16. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research. 2009;37(suppl_2):W202-8. https://doi.org/10.1093/nar/gkp335

17. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. 2005:571-607. https://doi.org/10.1385/1-59259-890-0:571

18. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics. 2006;64(3):643-51. https://doi.org/10.1002/prot.21018

19. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Research. 2007;35(suppl_2):W585-7. https://doi.org/10.1093/nar/gkm259

20. Petersen TN, Brunak S, Von Heijne G, Nielsen H. Signal P 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011;8(10):785. https://doi.org/10.1038/nmeth.1701

21. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology. 2001;305(3):567-80. https://doi.org/10.1006/jmbi.2000.4315

22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33(7):1870. https://doi.org/10.1093/molbev/msw054

23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32(5):1792-97. https://doi.org/10.1093/nar/gkh340

24. Pearson WR. An introduction to sequence similarity (“homology”) searching. Current Protocols in Bioinformatics. 2013;42:3-1. https://doi.org/10.1002/0471250953.bi0301s42

25. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods. 2008;5(7):621. https://doi.org/10.1038/nmeth.1226

26. Seo J, Gordish-Dressman H, Hoffman EP. An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics. 2006;22(7):808-14. https://doi.org/10.1093/bioinformatics/btk052

27. Sapay N, Guermeur Y, Deléage G. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC bioinformatics. 2006;7(1):255. https://dx.doi.org/10.1186%2F1471-2105-7-255

28. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods. 2015;12(1):7. https://doi.org/10.1038/nmeth.3213

29. Rahman ZU, Azam SM, Liu Y, Yan C, Ali H, Zhao L, et al. Expression profiles of Wuschel-related homeobox gene family in pineapple (Ananas comosus L). Tropical Plant Biology. 2017; 4(10):204-15. https://doi.org/10.1007/s12042-017-9192-9

30. Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology. 2008;8(1):291. https://doi.org/10.1186/1471-2148-8-291

31. Romera?Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S. The WOX 13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. The Plant Journal. 2013;73(1):37-49. https://doi.org/10.1111/tpj.12010

32. Sakakibara K, Reisewitz P, Aoyama T, Friedrich T, Ando S, Sato Y, et al. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development. 2014;141(8):1660-70. https://doi.org/10.1242/dev.097444

33. Colombo L, Battaglia R, Kater MM. Arabidopsis ovule development and its evolutionary conservation. Trends in Plant Science. 2008;13(8):444-50. https://doi.org/10.1016/j.tplants.2008.04.011

34. Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. The Plant Cell. 2009;21(11):3493-505. https://doi.org/10.1105/tpc.109.069997

35. Silva AT, Paiva LV, Andrade AC, Barduche D. Identification of expressed sequences in the coffee genome potentially associated with somatic embryogenesis. Genetics and Molecular Biology Research. 2013;12:1698-709. https://doi.org/10.4238/2013.May.21.1

36. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental cell. 2008;14(6):867-76. https://doi.org/10.1016/j.devcel.2008.03.008

37. Hu X, Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology. 2016;172:2363-73. https://doi.org/10.1104/pp.16.01067

38. Jiang W, Zhou S, Zhang Q, Song H, Zhou DX, Zhao Y. Transcriptional regulatory network of WOX11 is involved in the control of crown root development, cytokinin signals and redox in rice. Journal of Experimental Botany. 2017;68:2787-98. https://doi.org/10.1093/jxb/erx153

39. Zhao Y, Hu Y, Dai M, Huang L, Zhou DX. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. The Plant Cell. 2009;21:736-48. https://doi.org/10.1105/tpc.108.061655

40. Cheng S, Zhou DX, Zhao Y. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development. Plant Signaling & Behavior. 2016;11(2):e1130198. https://doi.org/10.1080/15592324.2015.1130198

41. Auffinger P, Grover N, Westhof E. Metal ion binding to RNA. Metal Ions in Life Science. 2011;9(1). https://doi.org/10.1039/9781849732512-00001

Published

18-04-2020

How to Cite

1.
Victorathisayam T, Kanchan M, Himani `, Suriyanarayanan TR, Sembi JK, Ramkumar TR. In silico identification, characterization and expression profile of WUSCHEL-related homeobox (WOX) gene family in Vanilla planifolia. Plant Sci. Today [Internet]. 2020 Apr. 18 [cited 2024 Dec. 22];7(2):206-13. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/722

Issue

Section

Research Articles