Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 1 (2025)

Biochemical clues to insecticide resistance in mango hoppers of Bhubaneswar

DOI
https://doi.org/10.14719/pst.7302
Submitted
20 January 2025
Published
24-02-2025 — Updated on 28-02-2025
Versions

Abstract

Mango hoppers (Amritodus atkinsoni, Idioscopus niveosparsus and Idioscopus clypealis) are major pests affecting mango cultivation in Bhubaneswar, Odisha, where insecticide resistance has become a significant challenge. This study aimed to investigate the biochemical mechanisms of resistance, focusing on the activities of detoxifying enzymes Carboxylesterase (CE) and Glutathione-S-Transferase (GST). Seasonal variations in enzyme activity and kinetic properties (Km and Vmax) were analysed alongside bioassays to assess insecticide efficacy and the role of enzyme inhibitors. CE and GST activities were measured using established biochemical assays, while inhibitors such as Diethyl Maleate (DEM) and Triphenyl Phosphate (TPP) were tested for their ability to reduce enzyme-mediated resistance. Results showed that CE activity peaked at 1.89 µmol/min/mg in July 2023, a 5.3-fold increase from March 2022, while GST activity reached 297.43 µmol of CDNB conjugated/min/mg. These trends correlated with higher LC50 values for Acephate (4.442 ppm in October 2022, up from 1.471 ppm in March 2022) and Imidacloprid (1.313 ppm in July 2023, compared to 1.142 ppm in March 2022), indicating increased resistance. Kinetic analysis showed lower Km (11.33 µM for CE and 14.33 µM for GST in July 2023) and higher Vmax (1.32 µmol/min/mg for CE and 1.14 µmol/min/mg for GST), suggesting enhanced enzymatic efficiency. The use of DEM and TPP significantly reduced LC50 values, with DEM lowering LC50 by 45 % for Lambda-Cyhalothrin. These findings highlight the need for biochemical profiling and strategic enzyme inhibitor use to mitigate resistance. Seasonally tailored pest management strategies can enhance mango cultivation sustainability in Bhubaneswar.

References

  1. Shankar S, Kumar G, Singh A, Mishra PK. Revealed comparative advantage (RCA) and its application to evaluate India’s performance of fresh mangoes, mangosteen & guavas during the period 1991-2020: An analysis with respect to trade. J Contemp Issues Bus Gov. 2023;29(1):396-421.
  2. Rahman SMA. Mango hopper: Bioecology and management–A review. Agric Rev. 2007;28(1):49-55.
  3. Talpur MA, Khuhro RD. Relative population of mango hopper species on different mango varieties. J Asia-Pac Entomol. 2003;6(2):183-6. https://doi.org/10.1016/S1226-8615(08)60184-3
  4. Karar H, Bakhsh MA. Effect of host plant on abundance of mango hoppers, Idioscopus clypealis (Lethierry) (Hemiptera: Cicadellidae). Pak Entomol. 2018;40(1):1-5.
  5. Reddy PVR, Sreedevi K. Arthropod communities associated with mango (Mangifera indica L.): diversity and interactions. Econ Ecol Signif Arthropods Divers Ecosyst. 2016;271-98. https://doi.org/10.1007/978-981-10-1524-3_14
  6. Jouni F, Brouchoud C, Capowiez Y, Sanchez-Hernandez JC, Rault M. Elucidating pesticide sensitivity of two endogeic earthworm species through the interplay between esterases and glutathione S-transferases. Chemosphere. 2021;262:127724. https://doi.org/10.1016/j.chemosphere.2020.127724
  7. Iltis C, Moreau J, Hübner P, Thiéry D, Louâpre P. Warming increases tolerance of an insect pest to fungicide exposure through temperature-mediated hormesis. J Pest Sci. 2022;95(2):827-39. https://doi.org/10.1007/s10340-021-01398-9
  8. Finke MD. Estimate of chitin in raw whole insects. Zoo Biol. 2007;26(2):105-15. https://doi.org/10.1002/zoo.20123
  9. Hare L. Aquatic insects and trace metals: bioavailability, bioaccumulation, and toxicity. Crit Rev Toxicol. 1992;22(5-6):327-69. https://doi.org/10.3109/10408449209146312
  10. Song XW, Zhong QS, Ji YH, Zhang YM, Tang J, Feng F, et al. Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. Insect Sci. 2022;29(1):215-29. https://doi.org/10.1111/1744-7917.12930
  11. Redmile-Gordon MA, Armenise E, White RP, Hirsch PR, Goulding KWT. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol Biochem. 2013;67:166-73. https://doi.org/10.1016/j.soilbio.2013.08.017
  12. Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, et al. Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol. 2011;159(2):267-80. https://doi.org/10.1111/j.1744-7348.2011.00491.x
  13. Gavya SL, Arora N, Ghosh SS. Retention of functional characteristics of glutathione-S-transferase and lactate dehydrogenase-A in fusion protein. Prep Biochem Biotechnol. 2018;48(2):128-35. https://doi.org/10.1080/10826068.2017.1405022
  14. Alizadeh M, Bandani AR, Amiri A. Evaluation of insecticide resistance and biochemical mechanism in two populations of Eurygaster integriceps Puton (Heteroptera: Scutelleridae). Mun Ent Zool. 2010;5(2):734-44.
  15. Kim SJ, Kim YO, Cho YK, Choi WS, Sung ND. HQSAR analyses on the tyrosinase inhibitory activity of phenyl-2, 2'-methylenebis (cyclohexane-1, 3-dione) analogues. J Soc Cosmet Sci Korea. 2010;36(3):199-205.
  16. Stepankova S, Komers K. Cholinesterases and cholinesterase inhibitors. Curr Enzyme Inhib. 2008;4(4):160-71. https://doi.org/10.2174/157340808786733631
  17. Xi J, Pan Y, Bi R, Gao X, Chen X, Peng T, et al. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross-resistance in Aphis glycines Matsumura. Pestic Biochem Physiol. 2015;118:77-81. https://doi.org/10.1016/j.pestbp.2014.12.002
  18. Seagraves MP, McPherson RM. Residual susceptibility of the red imported fire ant (Hymenoptera: Formicidae) to four agricultural insecticides. J Econ Entomol. 2003;96(3):645-8. https://doi.org/10.1093/jee/96.3.645
  19. Storey KB. Oxidative stress: animal adaptations in nature. Braz J Med Biol Res. 1996;29:1715-33.
  20. Prasanna GL. High throughput sequencing (HTS): an advanced technology used in characterization of the functions of the plant endophytes. Agric Food E-newsletter. 2022;4(2):36540.
  21. Phankaen P, Bullangpoti V, Pluempanupat W, Saiyaitong C, Temyarasilp P, Kumrungsee N. Phytochemical screening and toxicity assessment of compounds isolated from the leaves of Mangifera indica L. for the control of Spodoptera litura (Lepidoptera; Noctuidae). J Appl Res Sci Technol. 2024;23(3):255634. https://doi.org/10.60101/jarst.2024.255634
  22. Jawed H, Azim MK, Saeed S. An overview of secondary metabolites of mango (Mangifera indica) fruit. Pak J Biochem Mol Biol. 2022;55(4):188-204.
  23. Botté ES, Jerry DR, King SC, Smith-Keune C, Negri AP. Effects of chlorpyrifos on cholinesterase activity and stress markers in the tropical reef fish Acanthochromis polyacanthus. Mar Pollut Bull. 2012;65(4-9):384-93. https://doi.org/10.1016/j.marpolbul.2011.08.020
  24. Pati SG, Paital B, Panda F, Jena S, Sahoo DK. Impacts of habitat quality on the physiology, ecology, and economic value of mud crab Scylla sp.: A comprehensive review. Water. 2023;15(11):2029. https://doi.org/10.3390/w15112029
  25. Dubey SK. Microbial ecology of methane emission in rice agroecosystem: A review. Appl Ecol Environ Res. 2005;3(2):1-27. https://doi.org/10.15666/aeer/0302_001027
  26. Matzrafi M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag Sci. 2019;75(1):9-13. https://doi.org/10.1002/ps.5121
  27. González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. 2020;95(3):802-21. https://doi.org/10.1111/brv.12588
  28. Wang Z, Zhao Z, Cheng X, Liu S, Wei Q, Scott IM. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic Biochem Physiol. 2016;127:1-7. https://doi.org/10.1016/j.pestbp.2015.09.003
  29. El-Sayed MH, Ibrahim MM, Elsobki AE, Aioub AA. Enhancing the toxicity of cypermethrin and spinosad against Spodoptera littoralis (Lepidoptera: Noctuidae) by inhibition of detoxification enzymes. Toxics. 2023;11(3):215. https://doi.org/10.3390/toxics11030215

Downloads

Download data is not yet available.