Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Plant genetic engineering, molecular farming and biosafety regulations in India

DOI
https://doi.org/10.14719/pst.7530
Submitted
30 January 2025
Published
27-10-2025
Versions

Abstract

Molecular farming is a biotechnological approach that modifies plants or other organisms to produce desired and valuable products such as proteins, chemicals, or pharmaceuticals. These products are challenging to get or expensive to manufacture using classical biotechnological methods. The molecular production system primarily involves plants, animals and microorganisms such as algae, yeast and bacteria. The plants are often referred to as "bioreactors". Several biotechnological methods are applied, such as modifying plant-based expression systems involving nuclear or chloroplast genomes or enhancing plants' Heterologous Protein (HP) accumulation. The advantages of molecular farming are seen in their cost-effectiveness, scalability, faster production and safety. These bioreactors are known to produce antigen proteins used in vaccine development and nutraceuticals like omega-3 fatty acids, vitamins and nutritional benefits. The generated vaccines have become popular as edible vaccines. However, challenges and concerns associated with such products and methods as Genetically Modified Organisms (GMOs) having such potential are controversial, with concerns about environmental impact, safety and ethical issues. Also, molecular farming products are questioned for their yield, efficiency, purity and stability. This has led to the approval of only one non-food GM crop for cultivation in India despite several crops being ready to be launched. On the other hand, in terms of regulatory setup, India has a robust system and strict regulatory frameworks to ensure the safety of GMOs and the products they produce. India possesses adequate provisions under legal regimes, i.e., the constitution and various statutes that incorporate desired provisions as per national needs or international agreements on biosafety, the security of the environment, or public health. Despite issues, molecular farming holds great promise, especially in providing more affordable and scalable alternatives to traditional pharmaceutical manufacturing methods. As technology improves and regulatory hurdles are addressed, molecular farming could become an even more important tool in medicine, agriculture and environmental sustainability. The intended review aims to compile and analyze the available, relevant, legal-scientific and policy information about genetic engineering and products derived from such technologies, with special reference to products derived from molecular farming. The review includes two parts: the first covers molecular farming and genetic engineering-derived products and the second covers legal aspects related to their ethical consequences.

References

  1. 1. De Wilde C, Peeters K, Jacobs A, Peck I, Depicker A. Expression of antibodies and Fab fragments in transgenic potato plants: A case study for bulk production in crop plants. Mol Breed. 2002;9:271--82. https://doi.org/10.1023/A:1020306917914
  2. 2. Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv. 2011;29(2):210--222. https://doi.org/10.1016/j.biotechadv.2010.11.004
  3. 3. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, et al. Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A. 1983;80(15):4803-7.
  4. 4. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6(13):3901-7. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
  5. 5. Witcher DR, Hood EE, Peterson D, Bailey M, Bond D, Kusnadi A, et al. Commercial production of β-glucuronidase (GUS): A model system for the production of proteins in plants. Mol Breed. 1998;4:301-312. https://doi.org/10.1023/A:1009622429758
  6. 6. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey, Michele et al. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed. 1997;3:291-306. https://doi.org/10.1023/A:1009676322162
  7. 7. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR et al. Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem. 2003;38(Pt 2):123-130. https://doi.org/10.1042/BA20030026
  8. 8. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ. The expression of a nopaline synthase—human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol. 1986;6:347-57. https://doi.org/10.1007/BF00034942
  9. 9. Hiatt A, Caffferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature. 1989;342(6245):76-8. https://doi.org/10.1038/342076a0
  10. 10. During K. Wound-inducible expression and secretion of T4 lysozyme and monoclonal antibodies in Nicotiana tabacum [dissertation]. Köln: Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln; 1988. p. 1-90.
  11. 11. Lal P, Ramachandran VG, Goyal R, Sharma R. Edible vaccines: current status and future. Indian J Med Microbiol. 2007;25(2):93-102. https://doi.org/10.1016/S0255-0857(21)02165-4
  12. 12. Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine. 2002;20(25-26):3155-64. https://doi.org/10.1016/s0264-410x(02)00260-8.
  13. 13. Shchelkunov SN, Salyaev RK, Rekoslavskaya NI, Ryzhova TS, Pozdnyakov SG, Sumtsova VM, et al. The obtaining of transgenic tomato plant producing chimerical proteins TBI-HBsAg. Dokl Biochem Biophys. 2004;396:139-142. https://doi.org/10.1023/b:dobi.0000033512.53069.e8
  14. 14. Chowdhury K, Bagasra O. An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens. Med Hypotheses. 2007;68(1):22-30. https://doi.org/10.1016/j.mehy.2006.04.079
  15. 15. Loza-Rubio E, Rojas E, Gómez L, Olivera MT, Gómez-Lim MA. Development of an edible rabies vaccine in maize using the Vnukovo strain. Dev Biol (Basel). 2008;131:477-82. https://doi.org/10.1159/000131302
  16. 16. Vermij P, Waltz E. USDA approves the first plant-based vaccine. Nat Biotechnol. 2006;24(3):234.
  17. 17. Zahmanova G, Aljabali AA, Takova K, Toneva V, Tambuwala MM, Andonov AP, et al. The plant viruses and molecular farming: how beneficial they might be for human and animal health?. Int J Mol Sci. 2023;24(2):1533. https://doi.org/10.3390/ijms24021533
  18. 18. Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv. 2018;36(2):506-20. https://doi.org/10.1016/j.biotechadv.2018.02.002
  19. 19. Commandeur U, Twyman RM, Fischer R. The biosafety of molecular farming in plants. AgBiotechNet.2003;5(110):1-9.
  20. 20. Jian Y, Gong D, Wang Z, Liu L, He J, Han X, et al. How plants manage pathogen infection. EMBO reports. 2024 Jan 12;25(1):31-44. https://doi.org/10.1038/s44319-023-00023-3
  21. 21. Buyel JF, Fischer R. Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield and downstream costs. Biotechnol. Bioeng. 2012;109(10):2575-88. https://doi.org/10.1002/bit.24523
  22. 22. Xu S, Gavin J, Jiang R, Chen H. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol Prog. 2017;33(4):867-878. https://doi.org/10.1002/btpr.2415
  23. 23. Shoji Y, Farrance CE, Bautista J, Bi H, Musiychuk K, Horsey A, et al. A plant‐based system for rapid production of influenza vaccine antigens. Influenza and other respiratory viruses. 2012 May;6(3):204-10. https://doi.org/10.1111/j.1750-2659.2011.00295.x
  24. 24. Gleba YY, Tusé D, Giritch A. Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol. 2014;375:155-92. https://doi.org/10.1007/82_2013_352
  25. 25. Chen Q, Lai H. Gene delivery into plant cells for recombinant protein production. BioMed research international. 2015;2015(1):932161. https://doi.org/10.1155/2015/932161
  26. 26. Bernat-Silvestre C, De Sousa Vieira V, Sánchez-Simarro J, et al. Transient Transformation of A. thaliana Seedlings by Vacuum Infiltration. In: Sanchez-Serrano JJ, Salinas J, editors. Arabidopsis Protocols. Methods in Molecular Biology. Humana, New York, NY; 2021. https://doi.org/10.1007/978-1-0716-0880-7_6
  27. 27. Debler JW, Henares BM, Lee RC. Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts. Plant Cell Rep. 2021;40(5):805-18. https://doi.org/10.1007/s00299-021-02671-y
  28. 28. Asghar N, Melik W, Paulsen KM, Pedersen BN, Bø-Granquist EG, Vikse R, et al. Transient expression of flavivirus structural proteins in Nicotiana benthamiana. Vaccines. 2022;10(10):1667. https://doi.org/10.3390/vaccines10101667
  29. 29. Horn ME, Woodard SL, Howard JA. Plant molecular farming: systems and products. Plant Cell Rep. 2004;22(10):711-20. https://doi.org/10.1007/s00299-004-0767-1
  30. 30. Finer JJ. Plant nuclear transformation. In: Kempken F, Jung C, editors. Genetic modification of plants. Biotechnology in agriculture and forestry, vol 64. Springer, Berlin, Heidelberg; 2010. p. 3-21. https://doi.org/10.1007/978-3-642-02391-0_1
  31. 31. Kikkert JR, Vidal JR, Reisch BI. Stable Transformation of Plant Cells by Particle Bombardment/Biolistics. In: Peña L, editor. Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press; 2005. p. 61-78. https://doi.org/10.1385/1-59259-827-7:061
  32. 32. Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology. 1987;5(1):27-37. https://doi.org/10.1080/02726358708904533
  33. 33. Banakar R, Wang K. Biolistic Transformation of Japonica Rice Varieties. In: Rustgi S, Luo H, editors. Biolistic DNA Delivery in Plants. Methods in Molecular Biology. Humana, New York, NY;2020. https://doi.org/10.1007/978-1-0716-0356-7_8
  34. 34. Raji JA, Frame B, Little D, Santoso TJ, Wang K. Agrobacterium- and biolistic-mediated transformation of maize B104 inbred. Methods Mol Biol. 2018;1676:15-40. https://doi.org/10.1007/978-1-4939-7315-6_2
  35. 35. Wang Y, Zeng J, Su P, Zhao H, Li L, Xie X, et al. An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. Front Plant Sci. 2022;13:979540. https://doi.org/10.3389/fpls.2022.979540
  36. 36. Matsumoto TK, Gonsalves D. Biolistic and other non-Agrobacterium technologies of plant transformation. In: Altman A, Hasegawa PM, editors. Plant biotechnology and agriculture. Academic Press; 2012. p. 117-29. https://doi.org/10.1016/B978-0-12-381466-1.00008-0.
  37. 37. Lacroix B, Citovsky V. Biolistic Approach for Transient Gene Expression Studies in Plants. In: Methods in Molecular Biology (Clifton, N.J.). 2020;2124:125-39. https://doi.org/10.1007/978-1-0716-0356-7_6
  38. 38. Moses PB. Appendix: Gene transfer methods applicable to agricultural organisms. In: National Center for Biotechnology Information, US National Library of Medicine, editor. Washington (DC): National Academies Press (US); 1987.
  39. 39. De Cosa B, Moar W, Lee SB, Miller M, Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol. 2001;19(1):71-4. https://doi.org/10.1038/83559
  40. 40. Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 2007;145(4):1129-1143. https://doi.org/10.1104/pp.107.106690
  41. 41. Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, et al. Plastid transformation: Advances and challenges for its implementation in agricultural crops. Electron J Biotechnol. 2021;51:95-109. https://doi.org/10.1016/j.ejbt.2021.03.005
  42. 42. Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. Plant Methods. 2017;13:30. https://doi.org/10.1186/s13007-017-0179-1
  43. 43. Ren K, Xu W, Ren B, Fu J, Jiang C, Zhang J. A simple technology for plastid transformation with fragmented DNA. J Exp Bot. 2022;73(18):6078-6088. https://doi.org/10.1093/jxb/erac256
  44. 44. Bansal KC, Singh AK. Plastid Transformation in Eggplant. In: Maliga P, editor. Chloroplast Biotechnology. Methods in Molecular Biology. Humana Press, Totowa, NJ;2014. https://doi.org/10.1007/978-1-62703-995-6_19
  45. 45. Cui Y, Qin S, Jiang P. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PloS one. 2014 Jun 9;9(6):e98607. https://doi.org/10.1371/journal.pone.0098607
  46. 46. Liu CW, Lin CC, Chen JJ, Tseng MJ. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep. 2007;26(10):1733-44. https://doi.org/10.1007/s00299-007-0374-z
  47. 47. Kumar S, Dhingra A, Daniell H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol. 2004;56(2):203-16. https://doi.org/10.1007/s11103-004-2907-y
  48. 48. Bains S, Larsson P, Aronsson H. Plastid molecular pharming II. Production of biopharmaceuticals by plastid transformation. Mini Rev Med Chem. 2017;17(13):1316-30.
  49. 49. Fernández‐San Millán A, Mingo‐Castel A, Miller M, et al. A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 2003;1(2):71-9. https://doi.org/10.1046/j.1467-7652.2003.00008.x.
  50. 50. Kwon KC, Nityanandam R, New JS, Daniell H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol J. 2013;11(1):77-86. https://doi.org/10.1111/pbi.12008
  51. 51. Razmi S, Javaran MJ, Bagheri A, Honari H, Zadeh MS. Expression of human interferon gamma in tobacco chloroplasts. Romanian Biotechnol Lett. 2019;24(2):208-215. https://doi.org/10.25083/rbl/24.2/208.215
  52. 52. Morgenfeld M, Lentz E, Segretin ME, Alfano EF, Bravo-Almonacid F. Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol Biotechnol. 2014;56(11):1021-31. https://doi.org/10.1007/s12033-014-9781-x.
  53. 53. Kwon KC, Sherman A, Chang WJ, Kamesh A, Biswas M, Herzog RW, et al. Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol J. 2018;16(6):1148-60. https://doi.org/10.1111/pbi.12859
  54. 54. Gottschamel J, Lössl A, Ruf S, Wang Y, Skaugen M, Bock R, et al. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Mol Biol. 2016;91(4-5):497-512. https://doi.org/10.1007/s11103-016-0484-5
  55. 55. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J. 2007;5(4):495-510. https://doi.org/10.1111/j.1467-7652.2007.00259.x
  56. 56. Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, et al. High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta. 2009;229(6):1109-1122. https://doi.org/10.1007/s00425-009-0898-2
  57. 57. Zhou F, Badillo‐Corona JA, Karcher D, Karcher D, Gonzalez-Rabade N, Piepenburg K, et al. High‐level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J. 2008;6(9):897-913. https://doi.org/10.1111/j.1467-7652.2008.00356.x
  58. 58. Petersen K, Bock R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol. 2011;76(3-5):311-321. https://doi.org/10.1007/s11103-011-9742-8
  59. 59. Espinoza-Sánchez EA, Torres-Castillo JA, Rascón-Cruz Q, et al. Production and characterization of fungal β-glucosidase and bacterial cellulases by tobacco chloroplast transformation. Plant Biotechnol Rep. 2016;10:61-73. https://doi.org/10.1007/s11816-016-0386-7
  60. 60. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, et al. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res. 2013;22(2):391-402. https://doi.org/10.1007/s11248-012-9656-5
  61. 61. Hölzl G, Dörmann P. Chloroplast Lipids and Their Biosynthesis. Annu Rev Plant Biol. 2019;70:51-81. https://doi.org/10.1146/annurev-arplant-050718-100202
  62. 62. Daniell H, Lin CS, Yu M, et al. Chloroplast genomes: diversity, evolutionand applications in genetic engineering. Genome Biol. 2016;17(1):134. https://doi.org/10.1186/s13059-016-1004-2
  63. 63. Ueki S, Magori S, Lacroix B, Chang WJ. Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery. In: Sudowe S, Reske-Kunz A, editors. Biolistic DNA Delivery. Methods in Molecular Biology. Vol 940. Totowa, NJ: Humana Press; 2013. p. 17-26. https://doi.org/10.1007/978-1-62703-110-3_2
  64. 64. Jelly NS, Valat L, Walter B, Maillot P. Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotechnol J. 2014;12(9):1231-45. https://doi.org/10.1111/pbi.12294
  65. 65. Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS, et al. Transient expression of tetrameric recombinant human butyrylcholinesterase in Nicotiana benthamiana. Front Plant Sci. 2016;7:743. https://doi.org/10.3389/fpls.2016.00743
  66. 66. Musiychuk K, Sivalenka R, Jaje J, Bi H, Flores R, Shaw B, et al. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro. Stem Cells Dev. 2013;22(16):2326-2340. https://doi.org/10.1089/scd.2012.0489
  67. 67. Marques LÉC, Silva BB, Dutra RF, Florean EOPT, Menassa R, Guedes MIF. Transient expression of dengue virus NS1 antigen in Nicotiana benthamiana for use as a diagnostic antigen. Front Plant Sci. 2020;10:1674. https://doi.org/10.3389/fpls.2019.01674
  68. 68. Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, et al. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One. 2013;8(3):e58724. https://doi.org/10.1371/journal.pone.0058724
  69. 69. Gómez E, Zoth SC, Asurmendi S, Vázquez Rovere C, Berinstein A. Expression of hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus in agroinfiltrated Nicotiana benthamiana plants. J Biotechnol. 2009;144(4):337-40. https://doi.org/10.1016/j.jbiotec.2009.09.015
  70. 70. Phakham T, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Buranapraditkun S, Boonkrai C, et al. Functional characterization of pembrolizumab produced in Nicotiana benthamiana using a rapid transient expression system. Front Plant Sci. 2021;12:736299. https://doi.org/10.3389/fpls.2021.736299
  71. 71. Stark MC, Joubert AM, Visagie MH. Molecular farming of pembrolizumab and nivolumab. Int J Mol Sci. 2023;24(12):10045. https://doi.org/10.3390/ijms241210045
  72. 72. Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol. 2004;22(11):1415-22. https://doi.org/10.1038/nbt1027
  73. 73. Fischer R, Liao YC, Drossard J. Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods. 1999;226(1-2):1-10. https://doi.org/10.1016/s0022-1759(99)00058-7
  74. 74. Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif. 1998;13(1):45-52. https://doi.org/10.1006/prep.1998.0872.
  75. 75. Hong SY, Kwon TH, Jang YS, Kim SH, Yang MS. Production of bioactive human granulocyte-colony stimulating factor in transgenic rice cell suspension cultures. Protein Expr Purif. 2006;47(1):68-73. https://doi.org/10.1016/j.pep.2005.09.028
  76. 76. Vanz AL, Renard G, Palma MS, Chies JM, Dalmora SL, Basso LA, et al. Human granulocyte colony stimulating factor (hG-CSF): Cloning, overexpression, purification and characterization. Microb Cell Fact. 2008;7:13. https://doi.org/10.1186/1475-2859-7-13
  77. 77. Tremblay R, Wang D, Jevnikar AM, Ma S. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv. 2010;28(2):214-221. https://doi.org/10.1016/j.biotechadv.2009.11.008
  78. 78. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnol J. 2007;5(5):579-590. https://doi.org/10.1111/j.1467-7652.2007.00263.x
  79. 79. Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO reports. 2020 Sep 3;21(9):e50799. https://doi.org/10.15252/embr.202050799
  80. 80. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZN, et al. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol. 2016 ;18(1):21-42. https://doi.org/10.21775/cimb.018.021
  81. 81. Porto MS, Pinheiro MPN, Batista VGL. Plant promoters: An approach of structure and function. Mol Biotechnol. 2014;56:38-49. https://doi.org/10.1007/s12033-013-9713-1
  82. 82. Holásková E, Galuszka P, Mičúchová A, Šebela M, Öz MT, Frébort I. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37. Biotechnol J. 2018;13(6): e1700628. https://doi.org/10.1002/biot.201700628
  83. 83. Amack SC, Antunes MS. CaMV35S promoter-A plant biology and biotechnology workhorse in the era of synthetic biology. Curr. Plant Biol. 2020 Dec 1;24:100179. https://doi.org/10.1016/j.cpb.2020.100179
  84. 84. Nagaya S, Kawamura K, Shinmyo A, Kato K. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol. 2010;51(2):328-332. https://doi.org/10.1093/pcp/pcp188
  85. 85. Hirai T, Kurokawa N, Duhita N, Hiwasa-Tanase K, Kato K, Ezura H. The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes. J Agric Food Chem. 2011;59(18):9942-9. https://doi.org/10.1021/jf202501e.
  86. 86. Matsui T, et al. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease. Transgenic Res. 2011;20:735-748. https://doi.org/10.1007/s11248-010-9455-9 .
  87. 87. Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, et al. Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep. 2018;8(1):4755. https://doi.org/10.1038/s41598-018-23024-y.
  88. 88. Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M. Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep. 2018;8(1):4755. https://doi.org/10.1038/s41598-018-23024-y
  89. 89. Bartlett JG, Snape JW, Harwood WA. Intron‐mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J. 2009;7(9):856-66. https://doi.org/10.1111/j.1467-7652.2009.00448.x
  90. 90. Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv. 2010;28(4):427-35. https://doi.org/10.1016/j.biotechadv.2010.01.005
  91. 91. Yun YJ, Kim SS, Lee JH, Kim YC. Overexpression of lettuce TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor genes (LsTCP13 and LsTCP17) promotes flowering time through upregulation of AtFT and AtAP1 in Arabidopsis. Plant Biotechnol Rep. 2023;17(4):509-517. https://doi.org/10.1007/s11816-023-00850-9
  92. 92. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, et al. Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J. 2008;6(2):189-201. https://doi.org/10.1111/j.1467-7652.2007.00306.x
  93. 93. Streatfield SJ. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J. 2007;5(1):2-15. https://doi.org/10.1111/j.1467-7652.2006.00216.x
  94. 94. Ram N, Ayala M, Lorenzo D, Palenzuela D, Herrera L, Doreste V, et al. Expression of a single-chain Fv antibody fragment specific for the hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res. 2002;11:61-4.
  95. 95. Kay R, Chan A, Daly M, McPherson J. Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science. 1987;236(4806):1299-302. https://doi.org/10.1126/science.236.4806.1299
  96. 96. Rose AB. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA (New York, N.Y.). 2002;8(11):1444-1453. https://doi.org/10.1017/s1355838202020551
  97. 97. Havens MA. Co-regulation of microRNA biogenesis and host gene premessenger RNA splicing in disease [dissertation]. Rosalind Franklin University of Medicine and Science; 2013. Available from: https://www.proquest.com/openview/2f7bc19a32eabededec7c0d9eaa0bda1/1?pq-origsite=gscholar&cbl=18750
  98. 98. Liu WX, Liu HL, Chai ZJ, Xu XP, Song YR, Qu leQ. Evaluation of seed storage-protein gene 5' untranslated regions in enhancing gene expression in transgenic rice seed. TAG Theor Appl Genet. 2010;121(7):1267-74. https://doi.org/10.1007/s00122-010-1386-6
  99. 99. Guerineau F, Lucy A, Mullineaux P. Effect of two consensus sequences preceding the translation initiator codon on gene expression in plant protoplasts. Plant Mol Biol 1992;18(4):815-8. https://doi.org/10.1007/BF00020027
  100. 100. Comai L, Moran P, Maslyar D. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 1990;15(3):373-81. https://doi.org/10.1007/BF00019155
  101. 101. Webster GR, Teh AY, Ma JK. Synthetic gene design—the rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng. 2017;114(3):492-502. https://doi.org/10.1002/bit.26183
  102. 102. Whitelam GC, Cockburn B, Gandecha AR, Owen MR. Heterologous protein production in transgenic plants. Biotechnol Genet Eng Rev. 1993;11:1-29. https://doi.org/10.1080/02648725.1993.10647896
  103. 103. Palaniswamy H, Syamaladevi DP, Mohan C, Philip A, Petchiyappan A, Narayanan S. Vacuolar targeting of r-proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. Plant Biotechnol J. 2016;14(2):791-807. https://doi.org/10.1111/pbi.12430
  104. 104. Pillay P, Schlüter U, van Wyk S, Kunert KJ, Vorster BJ. Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered. 2014;5(1):15-20. https://doi.org/10.4161/bioe.25158
  105. 105. Aviram N, Schuldiner M. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J. Cell Sci. 2017;130(24):4079-85. https://doi.org/10.1242/jcs.204396
  106. 106. Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv. 2009;27(6):879-94. https://doi.org/10.1016/j.biotechadv.2009.07.002
  107. 107. Liu H, Timko MP. Improving Protein Quantity and Quality-The Next Level of Plant Molecular Farming. Int J Mol Sci. 2022;23(3):1326. https://doi.org/10.3390/ijms23031326
  108. 108. Chen TL, Lin YL, Lee YL, Yang NS, Chan MT. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Res. 2004;13:499-510.https://doi.org/10.1007/s11248-004-2376-8
  109. 109. Karki U, Fang H, Guo W, Unnold-Cofre C, Xu J. Cellular engineering of plant cells for improved therapeutic protein production. Plant Cell Rep. 2021;40(7):1087-99. https://doi.org/10.1007/s00299-021-02693-6
  110. 110. Santos RB, Abranches R, Fischer R, Sack M, Holland T. Putting the spotlight back on plant suspension cultures. Front Plant Sci. 2016;7:297. https://doi.org/10.3389/fpls.2016.00297
  111. 111. Marques M, Jangal M, Wang LC, Kazanets A, da Silva SD, Zhao T, et al. Oncogenic activity of poly (ADP-ribose) glycohydrolase. Oncogene. 2019;38(12):2177-91. https://doi.org/10.1038/s41388-018-0568-6.
  112. 112. Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, et al. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J. 2011;9(7):807-816. https://doi.org/10.1111/j.1467-7652.2011.00593.
  113. 113. Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, et al. Plant-produced subunit vaccine candidates against yellow fever induce virus neutralizing antibodies and confer protection against viral challenge in animal models. Am J Trop Med Hyg. 2018;98(2):420. https://doi.org/10.4269/ajtmh.16-0293
  114. 114. Zoschke R, Bock R. Chloroplast translation: structural and functional organization, operational controland regulation. Plant Cell. 2018;30(4):745-770. https://doi.org/10.1105/tpc.18.00016
  115. 115. Yanez RJ, Lamprecht R, Granadillo M, et al. Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS One. 2017;12(8):e0183177. https://doi.org/10.1371/journal.pone.0183177
  116. 116. Feng Z, Li X, Fan B, Zhu C, Chen Z. Maximizing the production of recombinant proteins in plants: from transcription to protein stability. Int J Mol Sci. 2022;23(21):13516. https://doi.org/10.3390/ijms232113516
  117. 117. Bell MR, Engleka MJ, Malik A, Strickler JE. To fuse or not to fuse: what is your purpose?. Protein Sci. 2013;22(11):1466-77. https://doi.org/10.1002/pro.2356
  118. 118. Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R. Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol. 2010;152(2):622-33. https://doi.org/10.1104/pp.109.149021
  119. 119. Ghidey M, Islam SA, Pruett G, Kearney CM. Making plants into cost-effective bioreactors for highly active antimicrobial peptides. New Biotechnol. 2020;56:63-70. https://doi.org/10.1016/j.nbt.2019.12.001
  120. 120. Schwestka J, Zeh L, Tschofen M, Schubert F, Arcalis E, Esteve-Gasent M, et al. Generation of multi-layered protein bodies in Nicotiana benthamiana for the encapsulation of vaccine antigens. Front Plant Sci. 2023;14:1109270. https://doi.org/10.3389/fpls.2023.1109270
  121. 121. Conley AJ, Joensuu JJ, Richman A, Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J. 2011;9(4):419-33. https://doi.org/10.1111/j.1467-7652.2011.00596.x
  122. 122. Hondred D, Walker JM, Mathews DE, Vierstra RD. Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol. 1999;119(2):713-24. https://doi.org/10.1104/pp.119.2.713
  123. 123. Ma S, Wang A. Molecular farming in plants: an overview. In: Wang A, Ma S, editors. Molecular farming in plants: recent advances and future prospects. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-2217-0_1.
  124. 124. Torrent M, Llop-Tous I, Ludevid MD. Protein body induction: a new tool to produce and recover recombinant proteins in plants. Methods Mol Biol. 2009;483:193-208. https://doi.org/10.1007/978-1-59745-407-0_11
  125. 125. Saberianfar R, Sattarzadeh A, Joensuu JJ, Kohalmi SE, Menassa R. Protein bodies in leaves exchange contents through the endoplasmic reticulum. Front Plant Sci. 2016;7:693. https://doi.org/10.3389/fpls.2016.00693
  126. 126. Whitehead M, Ohlschläger PN, Almajhdi FN, Alloza L, Marzábal P, Meyers AE, et al. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer. 2014;14:367. https://doi.org/10.1186/1471-2407-14-367
  127. 127. Alvarez ML, Topal E, Martin F, Cardineau GA. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant molecular biology. 2010;72:75-89. https://doi.org/10.1007/s11103-009-9552-4
  128. 128. Conley AJ, Joensuu JJ, Menassa R, Brandle JE. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol. 2009;7:48. https://doi.org/10.1186/1741-7007-7-48
  129. 129. Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J. Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res. 2007;16(2):239-249. https://doi.org/10.1007/s11248-006-9026-2
  130. 130. Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stöger E, et al. Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J. 2008;6(4):379-91. https://doi.org/10.1111/j.1467-7652.2008.00326.x
  131. 131. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, et al. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J. 2010;8(5):564-87. https://doi.org/10.1111/j.1467-7652.2009.00497.x
  132. 132. Parmenter DL, Boothe JG, van Rooijen GJ, Yeung EC, Moloney MM. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol. 1995;29(6):1167-1180. https://doi.org/10.1007/bf00020460
  133. 133. Varanko AK, Su JC, Chilkoti A. Elastin-like polypeptides for biomedical applications. Annu Rev Biomed Eng. 2020;22:343-369. https://doi.org/10.1146/annurev-bioeng-092419-061127
  134. 134. Urry DW. Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Progress in biophysics and molecular biology. 1992 Jan 1;57(1):23-57. https://doi.org/10.1016/0079-6107(92)90003-O
  135. 135. Barrett RD, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23(1):38-44. https://doi.org/10.1016/j.tree.2007.09.008.
  136. 136. Wright S. Recombinant DNA technology and its social transformation, 1972-1982. Osiris. 1986;2:303-60. https://doi.org/10.1086/368659 .
  137. 137. Patwardhan D, Sharma N. Application of molecular genetics. In: Kar D, Sarkar S, editors. Genetics fundamentals notes. Singapore: Springer; 2022. p. 761-802. https://doi.org/10.1007/978-981-16-7041-1_16.
  138. 138. Roesch EA, Drumm ML. Powerful tools for genetic modification: Advances in gene editing. Pediatr Pulmonol. 2017;52(S48):S15-20. https://doi.org/10.1002/ppul.23791 .
  139. 139. Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various aspects of a gene editing system—CRISPR-Cas9. Int J Mol Sci. 2020;21(24):9604. https://doi.org/10.3390/ijms21249604 .
  140. 140. Lee J, Chung JH, Kim HM, Kim DW, Kim H. Designed nucleases for targeted genome editing. Plant Biotechnol J. 2016;14(2):448-62. https://doi.org/10.1111/pbi.12465 .
  141. 141. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829 .
  142. 142. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23. https://doi.org/10.1126/science.1231143.
  143. 143. Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child. 2016;101(4):213-5. https://doi.org/10.1136/archdischild-2016-310459.
  144. 144. Wortley C. USPTO declares CRISPR patent interference. Lancet Respir Med. 2019;7(10):838. https://doi.org/10.1016/S2213-2600(19)30260-7.
  145. 145. ERS Genomics. Advances for India as foundational CRISPR/Cas9 gene editing patent granted [Internet]. Dublin: ERS Genomics; 2022 [cited 2025 Apr 25].
  146. 146. Akashvani. India becomes 1st country in world to develop genome-edited rice varieties [Internet]. News On Air; 2025 May 5 [cited 2025 May 8]. Available from: https://www.newsonair.gov.in/india-becomes-1st-country-in-world-to-develop-genome-edited-rice-varieties/
  147. 147. Mandal A. ICAR to launch two genome edited rice varieties: Why is this such a major breakthrough for ICAR and India’s agriculture? [Internet]. Agrimoon.com; 2025 May 4 [cited 2025 Apr 25].
  148. 148. Mirzaee M, Osmani Z, Frébortová J, Frébort I. Recent advances in molecular farming using monocot plants. Biotechnol Adv. 2022;58:107913.https://doi.org/10.1016/j.biotechadv.2022.107913.
  149. 149. Shanmugaraj B, Bulaon CJ, Phoolcharoen W. Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants (Basel). 2020;9(7):842. https://doi.org/10.3390/plants9070842
  150. 150. Turnbull C, Lillemo M, Hvoslef-Eide TA. Global regulation of genetically modified crops amid the gene edited crop boom—A review. Front Plant Sci. 2021;12:630396. https://doi.org/10.3389/fpls.2021.630396
  151. 151. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC [Internet].
  152. 152. Regulation (EC) No 726/2004 of the European Parliament and of the Council of 31 March 2004 [Internet]. Official Journal of the European Union. L 136/1, 2004 [cited 2024 Aug 3]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004R0726o
  153. 153. Guru RK, Ganpatrao AS, Madhao AP, Pradhan R, Mohanty A, Panigrahi KK, et al. Biosafety and biosecurity concerns associated with plant genome editing. In:Khan Z, Shawar D,Heikal Y, editors. Genome Editing and Global Food Security. London: Routledge;2024 .p. 236-274.
  154. 154. Organization [Internet]. U.S. Department of Agriculture, Animal and Plant Health Inspection Service. [Last modified 2024 Sep 24; cited 2024 Aug 3]. Available from: https://www.aphis.usda.gov/organization
  155. 155. Convention on Biological Diversity text and annexes [Internet]. Secretariat of the Convention on Biological Diversity Montreal; 2011 [cited 2024 Aug 3]. Available from: https://www.cbd.int/doc/legal/cbd-en.pdf
  156. 156. The Biological Diversity Act, 2002 And Biological Diversity Rules, 2004 [Internet]. National Biodiversity Authority India; 2004 [Cited: 2024 July 10]. Available from: http://www.nbaindia.org/uploaded/act/BDACT_ENG.pdf
  157. 157. The Environment (Protection) Act, 1986 No. 29 Of 1986 [Internet]. Indiacode [Cited: 2024 July 10]. Available from: https://www.indiacode.nic.in/bitstream/123456789/4316/1/ep_act_1986.pdf
  158. 158. The Convention on Biological Diversity [Internet]. About the Protocol. [Updated 2021 May 18; cited 2024 Aug 3]. Available from: https://bch.cbd.int/protocol/background
  159. 159. Nagoya Protocol On Access To Genetic Resources And The Fair And Equitable Sharing Of Benefits Arising From Their Utilization To The Convention On Biological Diversity [Internet]. Text And Annex. Secretariat of the Convention On Biological Diversity Montreal; 2011[Cited 2024 Jul 30]. Available from: https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
  160. 160. Article 13, Constitution of India [Internet]. [Cited 2024 Dec 09]. Government Of India Ministry of Law And Justice Legislative Department, Official Languages Wing [Cited 2024 Dec 09]. Available from: https://cdnbbsr.s3waas.gov.in/s380537a945c7aaa788ccfcdf1b99b5d8f/uploads/2024/07/20240716890312078.pdf
  161. 161. Regamitha R, Naveen Kumar C. The independence of Indian judiciary. Int J Law Manag Humanities. 2022;5(3):917-926.
  162. 162. Bidarkar VA. The importance and features of Article 19 of the Indian Constitution. Indian J Integr Res Law. 2022;2(3):1-5.
  163. 163. Ruppel OC, Murray R. A comparative constitutional analysis of natural resources protection. Graz Law Working Paper. 2023;(07-2023). https://doi.org/10.2139/ssrn.4411279
  164. 164. Rosencranz A, Rustomjee S. Citizens' right to a healthful environment under the Constitution of India. Natl Law Sch J. 1996;8(1):5
  165. 165. Bhat S. The paradox of environmental federalism in India. In: Robbins K, editor. The law and policy of environmental federalism. Cheltenham: Edward Elgar Publishing; 2015. p. 327-352. https://doi.org/10.4337/9781783473625.00024
  166. 166. The Manufacture, Use, Import, Export and Storage of Hazardous Micro-organisms Genetically Engineered Organisms or Cells Rules, 1989 [Internet]. Ministry of Environment & Forests Notification; 1989 [cited 2024 Aug 3].
  167. 167. Ministry of Environment and Forests, Government of India. The Manufacture, Use, Import, Export and Storage of Hazardous Microorganisms, Genetically Engineered Organisms or Cells Rules, 1989 [Internet]. New Delhi: Ministry of Environment & Forests; 1989 [cited 2025 Jan 22]. Available from: https://npcb.nagaland.gov.in/wp-content/uploads/2016/03/genetically-rule-1989.pdf
  168. 168. Ahuja V. Regulation of emerging gene technologies in India. BMC Proc. 2018;12(Suppl 8):14.https://doi.org/10.1186/s12919-018-0106-0.
  169. 169. Boruah J, Naz F. Prevention of biopiracy under Indian legal regime for better conservation of biodiversity. Indian Law and Policy Review. 2021;1(1):1-24.
  170. 170. Rules For The Manufacture, Use/Import/Export And Storage Of Hazardous Micro Organisms/ Genetically Engineered Organisms Or Cells [Internet]. Annex-4 Ministry Of Environment & Forests. Genetic Engineering Appraisal Committee. Ministry of Environment, Forest and Climate Change, Government of India;1989 Dec 5 [Cited 2024 Jul 30]. Available from: http://geacindia.gov.in/resource-documents/biosafety-regulations/acts-and-rules/Rules-for-the-manufacture-use-import-export-and-storage-1989.pdf
  171. 171. India Biosafety Knowledge Portal [Internet]. Committees: RCGM Secretariat, Department of Biotechnology, Ministry of Science and Technology. [cited 2024 Jul 3]. Available from: https://ibkp.dbtindia.gov.in/Content/Commitee?AspxAutoDetectCookieSupport=1
  172. 172. Sankaranarayanan S. India is trialing gene-edited rice after regulatory change. Nat India [Internet]. 2024 May 24 [cited 2024 December 09]. Available from: https://www.nature.com/articles/d44151-024-00076-w.
  173. 173. Haq Z. Rules relaxed for some gene-edited plants, organisms [Internet]. Hindustan Times. 2022 Mar 31 [cited 2025 May 6].
  174. 174. Sharma H. For the first time, 2 new genome-edited rice varieties: Why is this such a major breakthrough for ICAR and India’s agriculture? [Internet]. The Indian Express. 2025 May 4 [cited 2025 May 6].
  175. 175. UK: Gene editing gets parliamentary approval - Seed World [Internet]. SeedWorld Europe. 2022 Mar 18 [cited 2025 May 6]. Available from: https://www.seedworld.com/europe/2022/03/18/uk-lords-approve-gene-editing/
  176. 176. The Seed Act, 1966 [Internet]. [Cited 2024 Dec 09]. Available from: https://www.indiacode.nic.in/bitstream/123456789/1712/1/196654.pdf
  177. 177. The Seeds Rules, 1968[Internet]. Under seed Act, 1966 (Act No. 54 Of 1966); 1966 [Cited 2024 Aug 1]. Available from: https://seednet.gov.in/material/Seed_Rule_1968.htm
  178. 178. The Seeds (Control) Order, 1983 Government of India, Ministry of Agriculture to (Department Of Agriculture & Cooperation); 1983 Dec 30. [Cited 2024 Aug 1]. Available from: https://upload.indiacode.nic.in/showfile?actid=AC_CG_61_1230_00001_00001_1561788925181&type=order&filename=the_seeds_(control)_order,_1983_date_30.12.1983.pdf
  179. 179. Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, et al. Seed-based expression systems for plant molecular farming. Plant Biotechnol J. 2010;8(5):588-606. https://doi.org/10.1111/j.1467-7652.2010.00511.x .
  180. 180. World Trade Organization. Module V: Patents [Internet]. Geneva: World Trade Organization; [cited 2025 Jan 22]. Available from: https://www.wto.org/english/tratop_e/trips_e/ta_docs_e/modules5_e.pdf
  181. 181. The Protection of Plant Variety & Farmers Right (PPVFR) Act, 2001 and Rules 2003 [Internet]. Protection of Plant Varieties and Farmers’ Rights Authority, Ministry of Agriculture and Farmers Welfare, Government of India. [Cited 2024 Aug 1]. Available from: https://plantauthority.gov.in/protection-plant-varieties-and-farmers-rights-act-2001
  182. 182. The Gazette of India. Extraordinary. PART-II-Section 3-Sub-section (ii). Ministry of Agriculture (Department of Agriculture & Cooperation) [Internet]. Plant Quarantine (Regulation of Import into India) Order, 2003 [cited 2024 Dec 11]. Available from: https://ibkp.dbtindia.gov.in/DBT_Content_Test/CMS/Guidelines/20181115121925276_PlantQuarantine_order_2003.pdf
  183. 183. GM Approval Database [Internet]. International Service for the Acquisition of Agri-biotech Applications (ISAAA);2024 [Cited: 2024:July 1]. Available from: https://www.isaaa.org/gmapprovaldatabase/
  184. 184. Biosafety Data of Approved GM Crops [Internet]. Genetic Engineering and Appraisal Committee, Ministry of Environment, Forest and Climate Change. [cited 2024 Aug 3]. Available from: http://www.geacindia.gov.in/biosafety-data-approved-GM-crops.aspx
  185. 185. Approval for Genetically Modified Mustard [Internet]. Ministry of Agriculture & Farmers Welfare. Press Information Bureau, Government of India; 2023 [cited 2024 Aug 3]. Available from: https://pib.gov.in/PressReleasePage.aspx?PRID=1897008
  186. 186. Proceedings of the 134th Meeting of the Genetic Engineering Appraisal Committee held on 21.03.2018 [Internet]. Genetic Engineering and Appraisal Committee, Ministry of Environment, Forest and Climate Change. [cited 2024 Aug 3]. Available from: https://geacindia.gov.in/Uploads/MoMPublished/2018-geac-134.pdf
  187. 187. Minutes Of The 147TH Meeting of The Genetic Engineering Appraisal Committee Held On 18.10.2022 [Internet].Genetic Engineering Appraisal Committee.Ministry of Environment, Forest and Climate Change, Government of India;2022 [Cited: 2024:July 3]. Available from: http://www.geacindia.gov.in/Uploads/MoMPublished/MoMPublishedOn20221025200345.pdf
  188. 188. Tahir MS, Gondal AH, Tariq H, Wang D, Zhang N, Li B. Role of genetically modified organisms in food, crop production, their regulations and controversy. CABI Rev. 2024;19(1). https://doi.org/10.1079/cabireviews.2024.0012
  189. 189. The National Green Tribunal Act, 2010 [Internet]. Arrangement of Sections. [Last updated 2021 Sep 17; cited 2024 Aug 3]. Available from: https://www.indiacode.nic.in/bitstream/123456789/2025/1/AA2010__19green.pdf
  190. 190. Dolezel M, Lang A, Greiter A, Miklau M, Eckerstorfer M, Heissenberger A, et al. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BioTech. 2024;13(2):14. https://doi.org/10.3390/biotech13020014
  191. 191. A.P. Pollution Control Board vs. Prof. M.V. Nayudu (Retd.) and Others [Internet]. Supreme Court of India. Digital Supreme Court Reports; [cited 2025 May 12]. Available from: https://digiscr.sci.gov.in/view_judgment?id=MTQ3NQ==
  192. 192. Secretariat of the Convention on Biological Diversity. The Cartagena Protocol: text and annexes [Internet]. Montreal: Secretariat of the Convention on Biological Diversity; 2000 [cited 2025 May 6]. Available from: https://www.cbd.int/doc/legal/cartagena-protocol-en.pdf
  193. 193. Subhash Kumar vs. State of Bihar and Others [Internet]. Supreme Court of India. Digital Supreme Court Reports; [cited 2025 May 12]. Available from: https://digiscr.sci.gov.in/view_judgment?id=MjE1MDc=
  194. 194. Supreme Court of India. Susetha vs. State of Tamil Nadu and Others [Internet]. 2006 Aug 8 [cited 2025 May 12]. Available from: https://indiankanoon.org/doc/1223975/
  195. 195. Supreme Court of India. Municipal Council, Ratlam vs. Shri Vardhichand and Others [Internet]. 1980 Jul 29 [cited 2025 May 12]. Available from: https://indiankanoon.org/doc/440471/
  196. 196. The Food Safety and Standards Act, 2006 The Food Safety And Standards Act Rules, 2011 [Internet]. India code, [Cited: 2025 May 06]. Available from: https://www.indiacode.nic.in/bitstream/123456789/7800/1/200634_food_safety_and_standards_act%2C_2006.pdf
  197. 197. The Essential Commodities Act, 1955 [Internet]. India code, [Cited: 2025 May 06]. Available from: https://www.indiacode.nic.in/bitstream/123456789/7053/1/essential_commodities_act_1955.pdf
  198. 198. The Patents Act, 1970: arrangement of sections [Internet]. New Delhi: Government of India; [cited 2025 May 12]. Available from: https://www.indiacode.nic.in/bitstream/123456789/1392/3/A1970-39.pdf
  199. 199. The Destructive Insects and Pests Act, 1914: arrangement of sections [Internet]. New Delhi: Government of India; [cited 2025 May 12]. Available from: https://www.indiacode.nic.in/bitstream/123456789/2354/1/A1914-02.pdf
  200. 200. Lu BR. Transgene escape from GM crops and potential biosafety consequences: an environmental perspective. Collect Biosaf Rev. 2008;4:66-141.
  201. 201. Lu BR. Assessing environmental impact of pollen-mediated transgene flow. In: Gene flow: monitoring, modeling and mitigation. Wallingford (UK): CABI; 2021. p. 1-25.
  202. 202. Chandler S, Dunwell JM. Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci. 2008;27(1):25-49
  203. 203. Mandal MK, Ahvari H, Schillberg S, Schiermeyer, A. Tackling unwanted proteolysis in plant production hosts used for molecular farming. Front Plant Sci. 2016; 7:267. https://doi.org/10.3389/fpls.2016.00267

Downloads

Download data is not yet available.