Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Classification of different edible plants based on total phenolic and in vitro antioxidant activities using principal component and hierarchical cluster analysis

DOI
https://doi.org/10.14719/pst.7544
Submitted
1 February 2025
Published
18-05-2025
Versions

Abstract

An acetone-aqueous extracts of 16 edible plants was prepared; their Total Phenolic Content (TPC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), 2,2?-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging (ABTS), Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) were measured. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were used to clarify the correlations between antioxidant assays and plant extracts. The first (PC1) and the second (PC2) principal components accounted for 91.60 % of the overall variability, whereas HCA classified samples into three main groups based on measured parameters. The 16 plants were classified into high, medium and low antioxidant activity groups based on according to TPC and the antioxidant activities results. Those in the high-antioxidant activity group were Punica granatum, Rheum officinale, Phyllanthus niruri and Melaleuca leucadendra. The plants in the medium-antioxidant activity group were Thymus vulgaris, Datura metel, Menthae arvensis, Parameria laevigata, Glycyrrhiza glabra, Curcuma xanthorrhiza and Zingiber officinale. The plants in the low-antioxidant activity group were Plantago major, Guazuma ulmifolia, Centella asiatica, Sericocalyx crispus and Piper nigrum. Positive relationships existed between TPC and the antioxidant activity of the extracts, indicating that the principal contributors to the antioxidant characteristics of the studied plants are phenolic compounds. Some of these plants may serve as valuable sources of natural antioxidants.

References

  1. Zandi P, Schnug E. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biol. 2022;11(2):155. https://doi.org/10.3390/biology11020155
  2. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 2022;11(3):552. https://doi.org/10.3390/cells11030552
  3. Sharifi-Rad M, Anil Kumar N V., Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stressand antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:1-21. https://doi.org/10.3389/fphys.2020.00694
  4. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891. https://doi.org/10.1016/j.ejmech.2020.112891
  5. Parcheta M, ?wis?ocka R, Orzechowska S, Akimowicz M, Choi?ska R, Lewandowski W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials (Basel). 2021;14(8):1984. https://doi.org/10.3390/ma14081984
  6. Ghosh N, Chatterjee S, Sil PC. Evolution of antioxidants over times (including current global market and trend). In: Seyed MN, Ana SS, editors. Antioxidants effects in health. Elsevier. 2022:3-32. https://doi.org/10.1016/B978-0-12-819096-8.00011-2
  7. Zeb A. Concept, mechanism and applications of phenolic antioxidants in foods. J Food Biochem. 2020;44(9):e13394. https://doi.org/10.1111/jfbc.13394
  8. Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: from sources to food industry applications. Molecules. 2019;24(22):4132. https://doi.org/10.3390/molecules24224132
  9. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021;22(7):3380. https://doi.org/10.3390/ijms22073380
  10. Gulcin ?. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol. 2020;94(3):651-715. https://doi.org/10.1007/s00204-020-02689-3
  11. Musa KH, Abdullah A, Jusoh K, Subramaniam V. Antioxidant activity of pink-flesh guava (psidium guajava l.): Effect of extraction techniques and solvents. Food Anal Methods. 2011;4(1):100–07. https://doi.org/10.1007/s12161-010-9139-3
  12. Slinkard K, Singleton VL. Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic. 1977;28(1):49-55. https://doi.org/10.5344/ajev.1977.28.1.49
  13. Elshaafi IM, Musa KH, Abdullah Sani N. Effect of oven and freeze drying on antioxidant activity, total phenolic and total flavonoid contents of fig (Ficus carica L.) leaves. Food Res. 2020;4(6):2114–21. https://doi.org/10.26656/fr.2017.4(6).072
  14. Ismail M, Abdallah EM, Musa KH, Abdellatif AAH. First report of some chemical and biological properties of two wild honey types collected from a remote area in Southern Darfur, Sudan. Food Res. 2023;7(3):203–13. https://doi.org/10.26656/fr.2017.7(3).360
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26(9-10):1231–37. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Dai L-X, Miao X, Yang X-R, Zuo L-P, Lan Z-H, Li B, et al. High value-added application of two renewable sources as healthy food: The nutritional properties, chemical compositions, antioxidantand antiinflammatory activities of the stalks of Rheum officinale Baill. and Rheum tanguticum Maxim. ex Regel. Front Nutr. 2022;8:770264. https://doi.org/10.3389/fnut.2021.770264
  17. Yuan S, Jian T, Li W, Huang Y. Extraction process optimization and activity assays of antioxidative substances from Rheum officinale. J Food Meas Charact. 2020;14(1):176–84. https://doi.org/10.1007/s11694-019-00279-1
  18. Dai L, Miao X, Ma Y, Yang X, Li B, He J, et al. Changes in the nutrients, phytochemical profile and antioxidant activity of Rheum officinale Baill. leaf blades during different growth periods. Front Nutr. 2024;11:1387947. https://doi.org/10.3389/fnut.2024.1387947
  19. Rajamanickam G, Manju SL . Identification and comparative study of invitro antioxidant potential of fractionated hydroalcoholic extract of Phyllanthus Niruri Linn. Eur J Adv Chem Res. 2020;1(1):1-8. https://doi.org/10.24018/ejchem.2020.1.1.2
  20. Araújo OF, Kristiani EBE, Kasmiyati S, Nugroho LH. The Phytochemical and biological activities of two phyllanthus species: Insights into metabolit, antioxidant and antibacterial activity. Biosaintifika J Biol Biol Educ. 2024;16(3):403–14. https://doi.org/10.15294/biosaintifika.v16i3.13944
  21. Swargiary D, Kashyap B, Sarma P, Ahmed SA, Gurumayum S, Barge SR, et al. Free radical scavenging polyphenols isolated from Phyllanthus niruri L. ameliorates hyperglycemia via SIRT1 induction and GLUT4 translocation in in vitro and in vivo models. Fitoterapia. 2024;173:105803. https://doi.org/10.1016/j.fitote.2023.105803
  22. Sihag S, Pal A, Ravikant, Saharan V. Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. Biocatal Agric Biotechnol. 2022;42:102368. https://doi.org/10.1016/j.bcab.2022.102368
  23. Zhao X, Yuan Z. Anthocyanins from Pomegranate ( Punica granatum L.) and their role in antioxidant capacities In vitro. Chem Biodivers. 2021;18(10):e2100399. https://doi.org/10.1002/cbdv.202100399
  24. Siddique S, Parveen Z, Firdaus-e-Bareen, Mazhar S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab J Chem. 2020;13(1):67-74. https://doi.org/10.1016/j.arabjc.2017.01.018
  25. Rahimi A, Mohammadi MM, Siavash Moghaddam S, Heydarzadeh S, Gitari H. Effects of stress modifier biostimulants on vegetative growth, nutrientsand antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. J Plant Growth Regul. 2022;41(5):2059–72. https://doi.org/10.1007/s00344-022-10604-6
  26. Prasathkumar M, Anisha S, Khusro A, Mohamed Essa M, Babu Chidambaram S, Walid Qoronfleh M, et al. Anti-pathogenic, anti-diabetic, anti-inflammatory, antioxidantand wound healing efficacy of Datura metel L. leaves. Arab J Chem. 2022;15(9):104112. https://doi.org/10.1016/j.arabjc.2022
  27. Saha A, Basak BB, Banerjee A. In vitro antioxidant evaluation and production of biochar from distillation waste biomass of Mentha arvensis. J Appl Res Med Aromat Plants. 2022;31:100428. https://doi.org/10.1016/j.jarmap.2022.100428104112
  28. Widyastuti I, Luthfah HZ, Hartono YI, Islamadina R, Can AT, Rohman A. Antioxidant activity of temulawak (Curcuma xanthorrhiza Roxb.) and its classification with chemometrics. Indonesian J Chemom Pharm Anal. 2020;1(1):28-41. https://doi.org/10.22146/ijcpa.507
  29. Asyhar R, Minarni M, Arista RA, Nurcholis W. Total phenolic and flavonoid contents and their antioxidant capacity of Curcuma xanthorrhiza accessions from Jambi. Biodiversitas J Biol Divers. 2023;24(9). https://doi.org/10.13057/biodiv/d240944
  30. Kusumadewi AP, Martien R, Pramono S, Setyawan AA, Windarsih A, Rohman A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of Indonesian Curcuma xanthorrhiza. Int J Food Prop. 2022;25(1):2364–72. https://doi.org/10.1080/10942912.2022.2134418
  31. Petrosyan HR, Nigaryan AA, Hovhannisyan HA, Soloyan AM, Vardapetyan VV, Martiryan AI. Evaluation of antioxidant activity and heavy metals content in licorice (Glycyrrhiza glabra L.) growing wild in Armenia. Heliyon 2023;9(11):e22442. https://doi.org/10.1016/j.heliyon.2023.e22442
  32. Mutaillifu P, Bobakulov K, Abuduwaili A, Huojiaaihemaiti H, Nuerxiati R, Aisa HA, et al. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int J Biol Macromol. 2020;144:751–59. https://doi.org/10.1016/j.ijbiomac.2019.11.245
  33. Semenescu I, Avram S, Similie D, Minda D, Diaconeasa Z, Muntean D, et al. Phytochemical, antioxidant, antimicrobial and safety profile of Glycyrrhiza glabra L. extract obtained from Romania. Plants. 2024;13(23):3265. https://doi.org/10.3390/plants13233265
  34. Satake T, Kamiya K, Ohno A, Horii Y, Endang H, Umar M. A-Type Proanthocyanidins from the bark of Parameria laevigata. Heterocycles. 2003;60(7):1697. https://doi.org/10.3987/COM-03-9793
  35. Mustafa I, Chin NL. Antioxidant properties of dried ginger (Zingiber officinale Roscoe) var. Bentong. Foods. 2023;12(1):178. https://doi.org/10.3390/foods12010178
  36. Alfuraydi AA, Aziz IM, Almajhdi FN. Assessment of antioxidant, anticancerand antibacterial activities of the rhizome of ginger (Zingiber officinale). J King Saud Univ - Sci. 2024;36(3):103112. https://doi.org/10.1016/j.jksus.2024.103112
  37. Kandasamy A, Aruchamy K, Rangasamy P, Varadhaiyan D, Gowri C, Oh TH, et al. Phytochemical analysis and antioxidant activity of centella asiatica extracts: an experimental and theoretical investigation of flavonoids. Plants. 2023;12(20):3547. https://doi.org/10.3390/plants12203547
  38. Sabaragamuwa R, Perera CO. Total triterpenes, polyphenols, flavonoidsand antioxidant activity of bioactive phytochemicals of Centella asiatica by different extraction techniques. Foods. 2023;12(21):3972. https://doi.org/10.3390/foods12213972
  39. Moradi-Ozarlou M, Javanmardi S, Tayefi-Nasrabadi H. Antioxidant property of Plantago major leaf extracts reduces testicular torsion/detorsion-induced ischemia/reperfusion injury in rats. Vet Res forum an Int Q J. 2020;11(1):27-33. https://doi.org/10.30466/vrf.2019.102182.2432
  40. ?ahin B, Savc? A. Bioactive component analysis and in vitro antioxidant activities of Plantago major L. Türk Do?a ve Fen Derg. 2024;13(4):129-34. https://doi.org/10.46810/tdfd.1529274
  41. Araujo L, Nunes K, Mello J, Nakamura C, Gomes R, Bergamasco R. Evaluation of the antioxidant, photoprotective and wound healing capacity of Guazuma ulmifolia lam. extracts in L-929 cells exposed to UV-A and UV-B irradiation. J Braz Chem Soc. 2024;35(3):e-20230149. https://doi.org/10.21577/0103-5053.20230149
  42. Marda M, Naid T, Rahmawati R. Antioxidant activity of dechlorophyllation of kejibeling leaf (Strobilanthes crispu L.) extract using the free radical reduction method. Pharm Reports. 2024;3(1):6-11. https://doi.org/10.33096/pharmrep.v3i1.285
  43. Deng L, Huang G. Ultrasound-assisted extraction, optimization, characteristics and antioxidant activity of Piper nigrum L. polysaccharides. Ultrason Sonochem. 2025;116:107309. https://doi.org/10.1016/j.ultsonch.2025.107309
  44. Mollik M, Rahman MH, Al-Shaeri M, Ashraf GM, Alexiou A, Gafur MA. Isolation, characterization and in vitro antioxidant activity screening of pure compound from black pepper (Piper nigrum). Environ Sci Pollut Res. 2022;29(34):52220–32. https://doi.org/10.1007/s11356-022-19403-8
  45. Khiya Z, Oualcadi Y, Gamar A, Berrekhis F, Zair T, Hilali F EL. Azaroual M, editor. Correlation of total polyphenolic content with antioxidant activity of hydromethanolic extract and their fractions of the Salvia officinalis leaves from different regions of Morocco. J Chem. 2021:1–11. https://doi.org/10.1155/2021/8585313
  46. Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, et al. Variations in total phenolic, total flavonoid contents and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants. 2022;11(7):950. https://doi.org/10.3390/plants11070950
  47. Muflihah YM, Gollavelli G, Ling Y-C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants. 2021;10(10):1530. https://doi.org/10.3390/antiox10101530
  48. Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 2023;233:123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
  49. Kourouma V, Mu T, Zhang M, Sun H. Comparative study on chemical composition, polyphenols, flavonoids, carotenoids and antioxidant activities of various cultivars of sweet potato. Int J Food Sci Technol. 2020;55(1):369–78. https://doi.org/10.1111/ijfs.14336

Downloads

Download data is not yet available.