Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Revolutionizing weed management with nanotechnology: A review

DOI
https://doi.org/10.14719/pst.7680
Submitted
11 February 2025
Published
11-06-2025 — Updated on 01-07-2025
Versions

Abstract

Nanotechnology offers innovative solutions across various fields, including agriculture. By manipulating matter at the nanoscale (1-100 nm), nanotechnology facilitates the development of more efficient, durable and environmentally sustainable agricultural products. Key applications include nano-fertilizers, nano-pesticides and nanoherbicides, which enhance crop yields while mitigating environmental impact. For instance, nanoherbicides provide improved efficacy and targeted weed control, addressing challenges associated with conventional herbicides, such as resistance and soil contamination. Furthermore, nanotechnology enables the development of controlled -release herbicide systems, reducing toxicity and enhancing crop safety. Additionally, nanoparticles play a crucial role in soil health, water purification and pest management. Nanoparticle production techniques, such as top-down and bottom-up approaches, enable precise material engineering for agricultural use. However, the potential adverse effects of nanomaterials, such as toxicity and cellular damage in plants, necessitate careful consideration. The integration of nanotechnology in agriculture promises increased productivity, environmental sustainability and enhanced food safety. Continued research and development are essential to address the challenges and optimize the benefits of nanotechnology in agriculture.

References

  1. 1. Prasad R, Kumar V, Prasad KS. Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol. 2014;13(6):705–13. https://doi.org/10.5897/AJBX2013.13554
  2. 2. La Iacona M, Scavo A, Lombardo S, Mauromicale G. The Exploitation of Nanotechnology in Herbicides and Bioherbicides: A Novel Approach for Sustainable Weed Management. Agronomy. 2025;15(1):228. https://doi.org/10.3390/agronomy15010228
  3. 3. Amna, Alharby HF, Hakeem KR, Qureshi MI. Weed control through herbicide-loaded nanoparticles. Nanomaterials and plant potential. 2019:507–27. https://doi.org/10.1007/978-3-030-05569-1_20
  4. 4. Bhattacherje R, Ghosh S, Banerjee D. 4 Insects and nanoparticles. In: Immune System of Animals Volume 2. Berlin, Boston: De Gruyter; 2022. p. 61–88. https://doi.org/10.1515/9783110655872-004
  5. 5. Bindu VK, Fathima P, Yogananda S, Roopashree D. A review on nanotechnology in weed management. Mysore J. Agric Sci. 2023;57(4):1.
  6. 6. Bueno CC, Amarante AM, Oliveira GS, Deda DK, Teschke O, de Faria Franca E, et al. Nanobiosensor for diclofop detection based on chemically modified AFM probes. IEEE Sensors J. 2014;14(5):1467–75. https://doi.org/10.1109/
  7. JSEN.2014.2301997
  8. 7. Chinnamuthu CR, Kokiladevi E. Weed management through nanoherbicides. Application of nanotechnology in agriculture. 2007;10:978–1.
  9. 8. Buffle J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem. 2006;3(3):155–58. https://doi.org/10.1071/ENv3n3_ES
  10. 9. Christopher FC, Kumar PS, Christopher FJ, Joshiba GJ, Madhesh P. Recent advancements in rapid analysis of pesticides using nano biosensors: a present and future perspective. J Cleaner Prod. 2020;269:122356. https://doi.org/10.1016/j.jclepro.2020.122356
  11. 10. da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, et al. Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotech. 2014;14(9):6678–84. https://doi.org/10.1166/jnn.2014.9360
  12. 11. Du H, Xie Y, Wang J. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends Anal Chem. 2021;135:116178. https://doi.org/10.1016/j.trac.2020.116178
  13. 12. Emamverdian A, Ghorbani A, Li Y, Pehlivan N, Barker J, Ding Y, et al. Responsible mechanisms for the restriction of heavy metal toxicity in plants via the co-foliar spraying of nanoparticles. Agronomy. 2023;13(7):1748. https://doi.org/10.3390/agronomy13071748
  14. 13. Fahad F, Al-Hashimi RA, Hussain MJ. The Advancement in irrigation solution within the field of endodontics: A Review. J Baghdad Coll Dent. 2024;36(1):54–69. https://doi.org/10.26477/jbcd.v36i1.3591
  15. 14. Fakruddin M, Hossain Z, Afroz H. Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol. 2012;10:1–8. https://doi.org/10.1186/1477-3155-10-31
  16. 15. Franca EF, Leite FL, Cunha RA, Oliveira Jr ON, Freitas LC. Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys Chem Chem Phys. 2011;13(19):8894–99. https://doi.org/10.1039/C1CP20393B
  17. 16. Ghaffar N, Farrukh MA, Naz S. Applications of nanobiosensors in agriculture. Nanoagronomy. 2020:179-96. https://doi.org/10.1007/978-3-030-41275-3_10
  18. 17. Grillo R, Pereira AE, Nishisaka CS, De Lima R, Oehlke K, Greiner R, et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater. 2014;278:163–71. https://doi.org/10.1016/j.jhazmat.2014.05.079
  19. 18. Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, et al. Nanotechnology–A new frontier of nano-farming in agricultural and food production and its development. Sci Total Environ. 2023;857:159639. https://doi.org/10.1016/j.scitotenv.2022.159639
  20. 19. Jafir M, Irfan M, Zia-ur-Rehman M, Hafeez F, Ahmad JN, Sabir MA, et al. The global trend of nanomaterial usage to control the important agricultural arthropod pests: A comprehensive review. Plant Stress. 2023;10:100208. https://doi.org/10.1016/j.stress.2023.100208
  21. 20. Javaid M, Naeem-Ullah U, Khan WS, Saeed S, Qayyum MA, Khan MA. Role of nanotechnology in crop protection and production: A review. J Innov Sci. 2020;6(2):221–27. https://doi.org/10.17582/journal.jis/2020/6.2.221.227
  22. 21. Joshi H, Choudhary P, Mundra SL. Future prospects of nanotechnology in agriculture. Int J Chem Stud. 2019;7(2):957–63.
  23. 22. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, et al. Nanoparticles based on
  24. chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep. 2016 Jan 27;6(1):19768. https://doi.org/10.1038/srep19768
  25. 23. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate the plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–27. https://doi.org/10.1021/nn900887m
  26. 24. Kumari G, Kalita S, Hussain Z, Deka NC, Meena BR. Nanoencapsulation to control herbicide residues and resistance: A review. Asian J Microbiol Biotechnol Environ Sci. 2021;23:140–48.
  27. 25. Matter IA, Darwesh OM, Matter HA. Nanosensors for herbicides monitoring in soil. In: Nanomaterials for Soil Remediation. Elsevier; 2021. p. 221–37. https://doi.org/10.1016/B978-0-12-822891-3.00011-6
  28. 26. Muchhadiya RM, Kumawat PD, Sakarvadia HL, Muchhadiya PM. Weed management with the use of nano-encapsulated herbicide formulations: A review. J Pharm Innov. 2022;11:2068–75.
  29. 27. Murphy SD. The role of pollen allelopathy in weed ecology. Weed Technol. 2001;15(4):867–72. https://doi.org/10.
  30. 1614/0890-037X(2001)015[0867:TROPAI]2.0.CO;2
  31. 28. Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM. Biopolymer and polymer nanoparticles and their biomedical applications. In: Handbook of nanostructured materials and nanotechnology. Academic Press; 2000. p. 577–635. https://doi.org/10.1016/B978-012513760-7/50063-0
  32. 29. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. In: Interface science and technology Vol. 28. Elsevier; 2019. p. 1–27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8
  33. 30. Pathak J, Singh DK, Singh PR, Kumari N, Jaiswal J, Gupta A, et al. Application of nanoparticles in agriculture: nano-based fertilizers, pesticides, herbicides, and nanobiosensors. In: Molecular Impacts of Nanoparticles on Plants and Algae. Academic Press; 2024. p. 305–31. https://doi.org/10.1016/B978-0-323-95721-2.00012-9
  34. 31. Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V. Application of nanotechnology in agriculture. In: Environmental nanotechnology. Volume 4. 2020:317–48. https://doi.org/10.1007/978-3-030-26668-4_9
  35. 32. Preisler AC, Pereira AE, Campos EV, Dalazen G, Fraceto LF, Oliveira HC. Atrazine nanoencapsulation improves pre‐emergence herbicidal activity against Bidens pilosa without enhancing long‐term residual effect on Glycine max. Pest Manag Sci. 2020;76(1):141–49. https://doi.org/10.1002/ps.5482
  36. 33. Ribeiro LF, Reddy KR, Chetri JK. Nanobioremediation of insecticides and herbicides. In: Nano-Bioremediation: Fundamentals and Applications. Elsevier; 2022. p. 501–16. https://doi.org/10.1016/B978-0-12-823962-9.00002-7
  37. 34. Rani N, Duhan A, Pal A, Kumari P, Beniwal RK, Verma D, et al. Are nano-pesticides really meant for cleaner production? An overview on recent developments, benefits, environmental hazards and future prospectives. J Cleaner Prod. 2023;411:137232. https://doi.org/10.1016/j.jclepro.2023.137232
  38. 35. Saha B, Biswas S, Datta S, Mojumdar A, Pal S, Mohanty PS, et al. Sustainable Nano Solutions for Global Food Security and Biotic Stress Management. Plant Nano Biol. 2024:100090. https://doi.org/10.1016/j.plana.2024.100090
  39. 36. Salouti M, Khadivi Derakhshan F. Biosensors and nanobiosensors in environmental applications. In: Biogenic nanoparticles and their use in agro-ecosystems. 2020. p. 515–91. https://doi.org/10.1007/978-981-15-2985-6_26
  40. 37. Sarmah K, Borah R, Boruah S, Sarmah D. Nanopesticides: Revolutionizing pest management with nanotechnology. Biol Forum. 2023;15(7):210–18.
  41. 38. Sharma N, Singh S, Sondhia S. Recent advances in mitigation methods for herbicide residues in the soil. Indian J Weed Sci. 2020;52(4):300–08. https://doi.org/10.5958/0974-8164.2020.00060.X
  42. 39. Shimabukuro RH. Detoxication of herbicides. In: Weed physiology. Boca Raton (FL): CRC Press; 2018. p. 215–40. https://doi.org/10.1201/9781351077736-9
  43. 40. Singh RP. Recent trends, prospects, and challenges of nanobiosensors in agriculture. In: Biosensors in agriculture: Recent trends and future perspectives. 2021. p. 3–13. https://doi.org/10.1007/978-3-030-66165-6_1
  44. 41. Somasundaran P, Fang X, Ponnurangam S, Li B. Nanoparticles: Characteristics, mechanisms and modulation of biotoxicity. Kona. 2010;28:38–49. https://doi.org/10.14356/kona.2010007
  45. 42. Songa EA, Waryo T, Jahed N, Baker PG, Kgarebe BV, Iwuoha EI. Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis. 2009;21(3‐5):671–74. https://doi.org/10.1002/elan.200804452
  46. 43. Susha VS, Chinnamuthu CR, Pandian K. Remediation of herbicide atrazine through metal nanoparticles. Presented at: International Conference on Magnetic Materials and their Applications in the 21st Century; 2008 Oct 21; India. p. 21–23.
  47. 44. Takeshita V, Carvalho LB, Galhardi JA, Munhoz-Garcia GV, Pimpinato RF, Oliveira HC, et al. Development of a preemergent nanoherbicide: From efficiency evaluation to the assessment of environmental fate and risks to soil microorganisms. ACS Nanoscience Au. 2022;2(4):307–23. https://doi.org/10.1021/acsnanoscienceau.1c00055
  48. 45. Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, et al. Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press; 2018. p. 473–500. https://doi.org/10.1016/B978-0-12-811487-2.00021-9
  49. 46. Yadav AS, Srivastava DS. Application of nanotechnology in weed management: a review. Res Rev J Crop Sci Technol. 2015;4(2):21–23.
  50. 47. Zargar M, Bayat M, Romanova E, Izadi-Darbandi E. POST herbicide programs utilizing tribenuron for cleavers (Galium aparine L.) control in winter wheat cultivars. Arch Agron Soil Sci. 2020;66(9):1235–43. https://doi.org/10.1080/03650340.2019.1661995
  51. 48. Aslani F, Bagheri S, Muhd JN, Juraimi AS, Hashemi FS, Baghdadi A. Effects of engineered nanomaterials on plant growth: an overview. Sci World J. 2014;2014(1):641759. https://doi.org/10.1155/2014/641759
  52. 49. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ. 2018;630:1413-35. https://doi.org/10.1016/j.scitotenv.2018.
  53. 02.313
  54. 50. Zhang X, Cao H, Wang H, Zhao J, Gao K, Qiao J, et al. The effects of graphene-family nanomaterials on plant growth: A review. Nanomaterials. 2022;12(6):936. https://doi.org/10.3390/nano12060936
  55. 51. Chichiriccò G, Poma A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials. 2015;5(2):851–73. https://doi.org/10.3390/nano5020851

Downloads

Download data is not yet available.