Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Molecular characterization and phenotypic selection for blast resistance and yield enhancement in rice (Oryza sativa L.)

DOI
https://doi.org/10.14719/pst.7726
Submitted
13 February 2025
Published
11-06-2025 — Updated on 01-07-2025
Versions

Abstract

Gurjari, a widely cultivated high-yielding potential variety popular among the farmers of Gujarat, is highly susceptible to the blast disease. To improve its blast resistance, GNR-9 and Tetep, which carry major broad-spectrum resistance genes, were used as donors in a marker-assisted breeding program, combined with phenotypic selection for key agro-morphological traits. Foreground selection in F3 generation confirmed the presence of blast resistance genes Pikh/Pi54, Pitp(t) and Pita-2/Pi67 in 36 of 178 breeding lines. These 36 lines, along with 4 checks, were further evaluated in a Randomized Block Design (RBD) during Kharif 2022 for variability, correlation, Principal Component Analysis (PCA)  and Multi-Trait Genotype-Ideotype Distance Index (MGIDI) for selecting the best lines and molecular screening of blast resistance. Analysis of variance revealed significant variation for all 13 traits, with moderate GCV for plant height, productive tillers, 100-grain weight, grain yield, straw yield and harvest index. Grain yield showed positive correlations with panicle length, grains per panicle, 100-grain weight, straw yield and harvest index. PCA explained 82.13 % of total variation across traits, while MGIDI identified four high-performing lines; 22KSMF4-8, 22KSMF4-5, 22KSMF4-6 and 22KSMF4-14. Molecular screening of F₄ progenies identified nine F₄ derivatives carrying three blast resistance genes, with two (Gurjari × GNR-9) exhibiting superior grain yield and quality over Gurjari, making them promising candidates for developing high-yielding, blast-resistant varieties.

References

  1. 1. Pradhan SK, Barik SR, Nayak DK, Pradhan A, Pandit E, Nayak P, et al. Genetics, molecular mechanisms and deployment of bacterial blight resistance genes in rice. Critical Reviews in Plant Sciences. 2020;39(4):360–85. https://doi.org/10.1080/07352689.2020.1801559
  2. 2. Ou SH. Rice disease. 2nd edn. CAB International, Wallingford, Oxon, UK. 1985.
  3. 3. Sagar V, Dhawan G, Gopalakrishnan S, Vinod KK, Ellur RK, Mondal KK, et al. Marker-assisted introgression of genes governing resistance to bacterial blight and blast diseases into an elite Basmati rice variety, “Pusa Basmati 1509”. Euphytica. 2020;216:1–18. https://link.springer.com/article/10.1007/s10681-019-2549-4
  4. 4. Sester M, Raveloson H, Tharreau D, Becquer T. The difference in blast development in upland rice grown on Andosol vs Ferralsol. Journal of Crop Protection. 2020;115:40–6. https://doi.org/10.1016/j.cropro.2018.09.010
  5. 5. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, et al. Two adjacent nucleotide-binding site leucine-rich repeat class genes are required to confirm Pikm-specific rice blast resistance. Genetics. 2008;180:2267–76. https://doi.org/10.1534/genetics.108.095034
  6. 6. Bryan GT, Wu KS, Farrall L, Jia YL, Hershey HP, McAdams SA, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2008;12:2033–45. https://doi.org/10.1105/tpc.12.11.2033
  7. 7. Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH. Marker-assisted selection and pyramiding for three blast resistance genes, Pid(t)1, Pi-b, Pi-ta2, in rice. Shengwu Gongcheng Xuebao - Chinese Journal of Biotechnology. 2008;20(5):708–14. https://europepmc.org/article/med/15973995
  8. 8. Padmanabhan SY. Blast resistance in India. International Rice Research Institute. Rice blast workshop. Los Baños, Laguna, Philippines. 1979:49-61.
  9. 9. Singh UM, Dixit S, Alam S, Yadav S, Prasanth VV, Singh AK, et al. Marker-assisted forward breeding to develop a drought, bacterial leaf blight and blast-resistant rice cultivar. The Plant Genome. 2022;15(1):e20170. https://doi.org/10.1002/tpg2.20170
  10. 10. Balat JR, Patel VP, Visat ML, Bhagora RN. Variability analysis in F₂ population of rice (Oryza sativa L.) for yield and related traits. International Journal of Pure and Applied Bioscience. 2018;6(1):1021–7. https://krishikosh.egranth.ac.in/items/6b0ed2b6-cd61-4131-bf64-70209327ad02
  11. 11. Patel HR, Patel VP, Patel PB, Rathod AJ, Pampaniya AG. Genetic variability, correlation and path analysis for grain yield and component traits in F₃ segregating population of rice (Oryza sativa L.). International Journal of Chemical Studies. 2018;6(2):2327–31.
  12. 12. Prajapati MR, Bala M, Patel VP, Patel RK, Sushmitha US, Kyada AD, et al. Analysis of genetic variability and correlation for yield and its attributing traits in F₂ population of rice (Oryza sativa L.). Electron Journal Plant Breeding. 2022;13(3):983–90. https://ejplantbreeding.org/index.php/EJPB/article/view/4354
  13. 13. Grzesiak M, Hordyńska N, Maksymowicz A, Grzesiak S, Szechyńska-Hebda M. Variation among spring wheat (Triticum aestivum L.) genotypes in response to drought stress. II-Root system structure. Plants. 2019;8(12):584. https://doi.org/10.3390/plants8120584
  14. 14. Al-Ashkar I, Alderfasi A, El-Hendawy S, Al-Suhaibani N, El-Kafafi S, Seleiman MF. Detecting salt tolerance in doubled haploid wheat lines. Agronomy. 2019;9(4):211. https://doi.org/10.3390/agronomy9040211
  15. 15. El-Hendawy S, Al-Suhaibani N, Al-Ashkar I, Alotaibi M, Tahir MU, Solieman T, et al. Combining genetic analysis and multivariate modeling to evaluate spectral reflectance indices as indirect selection tools in wheat breeding under water deficit stress conditions. Remote Sensing. 2020;12(9):1480. https://doi.org/10.3390/rs12091480
  16. 16. Olivoto T, Nardino M. MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics. 2021;37(10):1383–9. https://doi.org/10.1093/bioinformatics/btaa981
  17. 17. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry. 1990;19:11-5. https://worldveg.tind.io/record/33886/
  18. 18. Fuentes JL, Correa-Victoria FJ, Escobar F, Prado G, Aricapa G, Duque MC, et al. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica. 2008;160:295–304. https://link.springer.com/article/10.1007/s10681-007-9497-0
  19. 19. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics. 2000;100:1121–28. https://link.springer.com/article/10.1007/s001220051395
  20. 20. Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics. 2005;274(6):569-78. https://link.springer.com/article/10.1007/s00438-005-0035-2
  21. 21. Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD. Development of DNA markers suitable for marker-assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Science. 2004;44(5):1790–98. https://doi.org/10.2135/cropsci2004.1790
  22. 22. Barman SR, Gowda M, Venu RC, Chattoo BB. Identification of a major blast resistance gene in the rice cultivar ‘Tetep’. Plant Breeding. 2004;123(3):300–2. https://doi.org/10.1111/j.1439-0523.2004.00982.x
  23. 23. Jia Y, Redus M, Wang Z, Rutger N. Development of a SNLP marker from the Pi-ta blast resistant gene by tri-primer PCR. Euphytica. 2004;138:97–105. https://link.springer.com/article/10.1023/B:EUPH.0000047079.42768.4d
  24. 24. Joshi S, Dhatwalia S, Kaachra A, Sharma KD, Rathour R. Genetic and physical mapping of a new rice blast resistance specificity Pi-67 from a broad-spectrum resistant genotype Tetep. Euphytica. 2019;215(1):1–11. https://link.springer.com/article/10.1007/s10681-018-2332-y
  25. 25. Sivasubramanian S, Menon M. Heterosis and inbreeding depression in rice. Madras Agricultural Journal. 1973;60(7):1139–40. https://www.cabidigitallibrary.org/doi/full/10.5555/19741623222
  26. 26. Johnson HW, Robinson H, Comstock RF. Estimates of genetic and environmental variability in soybean. Journal of Agronomy. 1955;47(1):314-8. https://www.cabidigitallibrary.org/doi/full/10.5555/19561600791
  27. 27. Olivoto T, Lúcio AD metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution. 2020;11:783–9. https://doi.org/10.1111/2041-210X.13384
  28. 28. Singh M, Kumar K, Singh RP. Study of coefficient of variation, heritability and genetic advance in hybrid rice. Oryza. 2007;44:160–2. https://www.indianjournals.com/ijor.aspx?target=ijor:oryza&volume=44&issue=2&article=016
  29. 29. Sravan T, Rangare NR, Suresh BG, Kumar SR. Genetic variability and character association in rainfed upland rice (Oryza sativa L.). Journal of Rice Research. 2012;5(1):2. https://sarr.co.in/wp-content/uploads/03-JRR-Vol-5_-Sravan-et-al.pdf
  30. 30. Kahani F, Hittalmani S. Genetic analysis and traits association in F₃ intervarietal populations in rice under aerobic condition. Journal of Rice Research. 2015;3:152. https://www.researchgate.net/profile/Farhad-Kahani/publication/284717209
  31. 31. Meena AK, Suresh J, Mahanthesha M, Meena HP. Genetic variability, heritability and genetic advance for yield and yield components in rice (Oryza sativa L.). The Ecoscan. 2015;9(4):1053–6. https://www.researchgate.net/publication/325736406
  32. 32. Priyanka GP, Senguttuvel M, Sujatha N, Sravanraju P, Beulah P, Naganna P, et al. Correlation between traits and path analysis coefficient for grain yield and other components in direct-seeded aerobic rice (Oryza sativa L.). Advanced Research Journal of Crop Improvement. 2016;7(1):40–5. https://www.researchgate.net/profile/Brajendra-Parmar/publication/335965289
  33. 33. Sameera SK, Srinivas T, Rajesh AP, Jayalakshmi V, Nirmala PJ. Variability and path coefficient for yield and yield components in rice. Bangladesh Journal of Agricultural Research. 2016;41(2):259–71. https://banglajol.info/index.php/BJAR/article/view/28229
  34. 34. Tulasi G, Padma V, Reddy DVV, Rao PR, Rao SD. Correlation and path coefficient analysis for grain yield and other component traits in rice genotypes. International Journal of Agricultural Science and Research. 2016;6(5):363–70. https://www.researchgate.net/profile/D-Reddy-10/publication/324588078
  35. 35. Nath S, Kole PC. Genetic variability and yield analysis in rice. Electronic Journal of Plant Breeding. 2021;12(1):253–8. https://ejplantbreeding.org/index.php/EJPB/article/view/3508
  36. 36. Benakanahalli NK. A framework for identification of stable genotypes based on MTSI and MGIDI indexes: An example in guar (Cymopsis tetragonoloba L.). Agronomy. 2021;11(6):1221. https://doi.org/10.3390/agronomy11061221
  37. 37. Meier C, Marchioro V, Meira D, Olivoto T, Klein L. Genetic parameters and multiple-trait selection in wheat genotypes. Pesquisa Agropecuária Tropical. 1953;51:e67996. https://www.scielo.br/j/pat/a/9VFXs5WbXgjJpmyNj8PjjRK/
  38. 38. Uddin S, Billah M, Afroz R, Rahman S, Jahan N, Hossain M, et al. Evaluation of 130 eggplant (Solanum melongena L.) genotypes for future breeding program based on qualitative and quantitative traits and various genetic parameters. Horticulturae. 2021;7(10):376. https://doi.org/10.3390/horticulturae7100376
  39. 39. Singamsetti A, Zaidi PH, Seetharam K, Vinayan MT, Olivoto T, Mahato A, et al. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Front Plant Science. 2023;14:1147424. https://doi.org/10.3389/fpls.2023.1147424
  40. 40. Ahmed SR, Ali Z, Ijaz I. Multi-trait selection of quinoa ideotypes at different levels of cutting and spacing. Sustainability. 2023;15(14):11446. https://doi.org/10.3390/su151411446

Downloads

Download data is not yet available.