Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Agronomic interventions to enhance abiotic stress resilience in cotton

DOI
https://doi.org/10.14719/pst.7883
Submitted
23 February 2025
Published
17-05-2025
Versions

Abstract

Cotton, a major fibre and oilseed crop, is highly vulnerable to abiotic stresses such as salinity, waterlogging, heat and drought, which significantly reduce yield and quality. Drought stress alone accounts for approximately 49 % of global agricultural yield losses, while salinity and waterlogging contribute up to 60 % of losses in upland cotton production. This review explores the physiological and biochemical responses of cotton to key abiotic stresses, including salinity, waterlogging, drought and heat. Salinity disrupts plant physiology by inducing ion toxicity and resulting in nutrient imbalances. Waterlogging interferes with photosynthesis and alters metabolic pathways, whereas drought severely affects stomatal conductance and photosynthesis. High temperatures reduce growth and fibre quality. While biotechnological interventions such as the development of salt-tolerant and waterlogging-resistant varieties offer long-term solutions, agronomic practices provide immediate, cost-effective methods for mitigating stress. The agronomic measures discussed include the use of biostimulants, plastic mulching, seed priming, nanoparticles and nutrient management. Biostimulants enhance nutrient uptake and stress tolerance, plastic mulching enhances water retention and moderates canopy temperature and seed priming induces stress resistance by modifying physiological responses. Nutrient management, particularly with respect to nitrogen and potassium, helps maintain plant vitality under stress conditions. This review also highlights emerging trends such as nanoparticle application for stress alleviation and nitrate use for waterlogging mitigation. These agronomic strategies, combined with biotechnological advancements, offer a holistic approach to enhancing abiotic stress tolerance in cotton. However, further research is needed to optimize these practices, especially in terms of addressing environmental challenges such as plastic pollution from mulching and long-term soil health impacts.

References

  1. 1. Food and Agriculture Organization of the United Nations. The impact of disasters on agriculture and food security: Avoiding and reducing losses through investment in resilience. Rome: FAO; 2023.
  2. 2. Singh CK, Rajkumar BK, Kumar V. Differential responses of antioxidants and osmolytes in upland cotton (Gossypium hirsutum) cultivars contrasting in drought tolerance. Plant Stress. 2021;2:100031. https://doi.org/10.1016/j.stress.2021.100031
  3. 3. Abdelraheem A, Fang DD, Zhang J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of upland cotton under the greenhouse and field conditions. Euphytica. 2017;214(1):1-20. https://doi.org/10.1007/s10681-017-2095-x
  4. 4. Tian LX, Zhang YC, Chen PL, Zhang FF, Li J, Yan F, et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front Plant Sci. 2021;12:634898. https://doi.org/10.3389/fpls.2021.634898
  5. 5. Goyal A. Enhancing cotton’s resilience to waterlogging and salinity stress with exogenous antioxidants. Univers Res Repo. 2023;10(3):35–40. https://doi.org/10.36676/urr.2023-v10i3-005
  6. 6. Lopez MV, Gutiérrez MV, El-Dahan MAA, Leidi EO, Gutiérrez JC. Genotypic variation in response to heat stress in upland cotton. InProc. World Cotton Conf., 3rd, Capetown, South Africa 2003 Mar (pp. 9-13). https://doi.org/10.14264/245982
  7. 7. Carillo P, Grazia M, Pontecorvo G, Fuggi A, Woodrow P. Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B editors. Abiotic stress in plants - Mechanisms and adaptations. InTech open; 2011. pp. 21-38. https://doi.org/10.5772/22331
  8. 8. Kumar P, Sharma PK. Soil salinity and food security in India. Front Sustain Food Syst. 2020;4:533781. https://doi.org/10.3389/fsufs.2020.533781
  9. 9. Kumar R, Singh A, Bhardwaj AK, Kumar A, Yadav RK, Sharma PC. Reclamation of salt‐affected soils in India: Progress, emerging challenges and future strategies. Land Degrad Dev. 2022;33(13):2169–80. https://doi.org/10.1002/ldr.4320
  10. 10. Yan N, Marschner P, Cao W, Zuo C, Qin W. Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res. 2015;3(4):316–23. https://doi.org/10.1016/j.iswcr.2015.11.003
  11. 11. Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol. 2019;10:2791. https://doi.org/10.3389/fmicb.2019.02791
  12. 12. Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A, et al. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Front Plant Sci. 2022;13:907937. https://doi.org/10.3389/fpls.2022.907937
  13. 13. Peng J, Zhang L, Liu J, Luo J, Zhao X, Dong H, et al. Effects of soil salinity on sucrose metabolism in cotton fiber. PLoS One. 2016;11(5):e0156398. https://doi.org/10.1371/journal.pone.0156398
  14. 14. Ashraf M. Salt tolerance of cotton: Some new advances. CRC Crit Rev Plant Sci. 2002;21(1):1–30. https://doi.org/10.1016/s0735-2689(02)80036-3
  15. 15. Si-min W. Physiological and molecular mechanisms of salt injury and salt tolerance in cotton. Acta Gossypii Sinica. 2008. https://doi.org/10.3724/sp.j.1006.2008.00305
  16. 16. Zhang F, Zhu G, Du L, Shang X, Cheng C, Yang B, et al. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep. 2016;6(1):20582. https://doi.org/10.1038/srep20582
  17. 17. Taghizadeh N, Ranjbar GA, Nematzadeh GA, Ramazani-Moghaddam MR. Salt-related genes expression pattern in salt-tolerant and salt-sensitive cultivars of cotton (Gossypium sp.) under NaCl stress. J Plant Mol Breed. 2018;6(1):1-5. https://doi.org/10.22058/jpmb.2018.75866.1151
  18. 18. Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci. 2011;180(5):672-78. https://doi.org/10.1016/j.plantsci.2011.01.009
  19. 19. Guo WenQi GW, Zhao XinHua ZX, Chen BingLin CB, Liu RuiXian LR, Zhou ZhiGuo ZZ. Effects of nitrogen on cotton (Gossypium hirsutum L.) root growth under short-term waterlogging during flowering and boll-forming stage. Acta Agronomica Sinica. 2009;35(6):1078–85. https://doi.org/10.3724/sp.j.1006.2009.01078
  20. 20. Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plants under waterlogging. Protoplasma. 2010;241(1–4):3–17. https://doi.org/10.1007/s00709-009-0098-8
  21. 21. Chaudhry UF, Ali MQ, Khalid MN. Waterlogging in cotton: Stress, consequences, adaptability, mechanisms and measures for mitigation of yield losses. Ind J Pure App Biosci. 2021;9(4):1-7. https://doi.org/10.18782/2582-2845.8750
  22. 22. Wu J, Wang J, Hui W, Zhao F, Wang P, Su C, et al. Physiology of plant responses to water stress and related genes: A review. Forests. 2022;13(2):324. https://doi.org/10.3390/f13020324
  23. 23. Elzenga J, Theo M, van Veen H. Waterlogging and plant nutrient uptake. In: Mancuso S, Shabala S, editors. Waterlogging signalling and tolerance in plants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 23–35. https://doi.org/10.1007/978-3-642-10305-6
  24. 24. Wen-qi GUO, Rui-xian LIU, Zhi-guo Z, Bing-lin C. Effects of nitrogen fertilization on gas exchange and chlorophyll fluorescence parameters of leaf during the flowering and boll-forming stage of cotton under short-term waterlogging. J Plant Nutr Fertil. 2010;16(2):362–69. https://doi.org/10.3724/sp.j.1006.2008.00675
  25. 25. Zhang Y, Kong X, Dai J, Luo Z, Li Z, Lu H, et al. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS One. 20;12(9):e0185075. https://doi.org/10.1093/pcp/pcp163
  26. 26. Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol. 2019;58(6):1233–44. https://doi.org/10.1175/jamc-d-18-0174.1
  27. 27. Bijalwan Yashwant Singh Parmar P, Bijalwan P, Sharma M, Kaushik P. Review of the effects of drought stress on plants: A systematic approach. 2022. https://doi.org/10.20944/preprints202202.0014.v1
  28. 28. Meshram JH, Singh SB, Raghavendra KP, Waghmare VN. Drought stress tolerance in cotton: progress and perspectives. In: Shanker AK, Anand, Shanker C, Maheswari M, editors. Climate Change and Crop Stress. Elsevier; 2022. pp. 135-169 https://doi.org/10.1016/b978-0-12-816091-6.00005-5
  29. 29. Ullah A, Sun H, Yang X, Zhang X. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J. 2017;15(3):271–84. https://doi.org/10.1111/pbi.12688
  30. 30. Khan A, Pan X, Najeeb U, Tan DK, Fahad S, Zahoor R, et al. Coping with drought: Stress and adaptive mechanisms and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. BiolRes. 2018;51. https://doi.org/10.1186/s40659-018-0198-z
  31. 31. Naikwade P. Plant responses to drought stress: morphological, physiological, molecular approaches and drought resistance. In Nivas MD, Manasi P, Umesh RP, editors. Plant Metabolites under Environmental Stress. 2022. pp. 149–83. https://doi.org/10.1201/9781003304869-8
  32. 32. Gholami R, Fahadi Hoveizeh N, Zahedi SM, Gholami H, Carillo P. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biol. 2022;22(1):477. https://doi.org/10.1186/s12870-022-03855-8
  33. 33. Li X, Smith R, Choat B, Tissue DT. Drought resistance of cotton (Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding. Funct Plant Biol. 2020;47(2):91-8. https://doi.org/10.1071/fp19093
  34. 34. Baldi P, La Porta N. Toward the genetic improvement of drought tolerance in conifers: An integrated approach. Forests. 2022;13(12):2016. https://doi.org/10.3390/f13122016
  35. 35. Noreen S, Athar HU, Ashraf M. Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pak J Bot. 2013;45(6):1873-81.
  36. 36. Fang Y, Liao K, Du H, Xu Y, Song H, Li X, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot. 2015;66(21):6803–17. https://doi.org/10.1093/jxb/erv386
  37. 37. Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM. Simulation of the impact of high temperature stress on annual crop yields. Agric For Meteorol. 2005;135(1–4):180–9. https://doi.org/10.1016/j.agrformet.2005.11.015
  38. 38. Kumari S, Thakur S, Kumar S. Effect of heat stress on morphology, physiology and molecular aspects of crops: A review. 2017.
  39. 39. Bas S, Killi D. Effects of heat and drought stress on sustainable agriculture and future food security in Türkiye. Turkish J Agric - Food Sci Tech. 2024;12(6):1093–103. https://doi.org/10.24925/turjaf.v12i6.1093-1103.6619
  40. 40. Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME. Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot. 2012;83:1–11. https://doi.org/10.1016/j.envexpbot.2012.04.001
  41. 41. Karademir E, Üniversitesi S, Karademir C, Ekinci R, Basbag S. Screening cotton varieties (Gossypium hirsutum L.) for heat tolerance under field conditions. Afr J Agric Res. 2012;7(47):6335-342.
  42. 42. He XY, Zhou ZG, Dai YJ, Qiang ZY, Chen B, Wang YH. Effect of increased temperature in boll period on fiber yield and quality of cotton and its physiological mechanism. Yingyong Shengtai Xuebao. 2013;24(12):3501–7.
  43. 43. Majeed S, Malik TA, Rana IA, Azhar MT. Antioxidant and physiological responses of upland cotton accessions grown under high-temperature regimes. Iran J Sci Technol Trans A Sci. 2019;43(6):2759–68. https://doi.org/10.1007/s40995-019-00781-7
  44. 44. Sarwar M, Saleem MF, Ullah N, Rizwan M, Ali S, Shahid MR, et al. Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci Rep. 2018;8(1):17086. https://doi.org/10.1038/s41598-018-35420-5
  45. 45. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions. Agron. 2019;9(6):306. https://doi.org/10.3390/agronomy9060306
  46. 46. Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, Spinelli F. Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Vol. 10, Agron. 2020;10(6):794. https://doi.org/10.3390/agronomy10060794
  47. 47. Franzoni G, Bulgari R, Ferrante A. Maceration time affects the efficacy of borage extracts as potential biostimulant on rocket salad. Agron. 2021;11(11):2182. https://doi.org/10.3390/agronomy11112182
  48. 48. Leliaert F, Smith D, Moreau H, Herron M, Verbruggen H, Delwiche C, et al. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;30:1–46. https://doi.org/10.1080/07352689.2011.615705
  49. 49. Jindo K, Olivares FL, Malcher DJ da P, Sánchez-Monedero MA, Kempenaar C, Canellas LP. From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Front Plant Sci. 2020;11:426. https://doi.org/10.3389/fpls.2020.00426
  50. 50. Canellas LP, Canellas NOA, da Silva RM, Spaccini R, Mota GP, Olivares FL. Biostimulants using humic substances and plant-growth-promoting bacteria: effects on cassava (Manihot esculentus) and okra (Abelmoschus esculentus) yield. Agron. 2022;13(1):80. https://doi.org/10.3390/agronomy13010080
  51. 51. Kıtır Şen N, Turan M, Gunes A, Nikerel E, Sogutmaz Ozdemir B, Unek C, et al. Beneficial role of plant growth-promoting bacteria in vegetable production under abiotic stress. In: Zaidi A, Khan MS, editors. Microbial strategies for vegetable production. 2017. pp. 151–66. https://doi.org/10.1007/978-3-319-54401-4_7
  52. 52. Khan MN. Nano-titanium dioxide (nano-tio2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J Plant Sci. 2015;11(1–3):1–11. https://doi.org/10.3923/jps.2016.1.11
  53. 53. Nardi S, Pizzeghello D, Schiavon M, Ertani A. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric. 2016;73(1):18–23. https://doi.org/10.1590/0103-9016-2015-0006
  54. 54. Zambrano JL, Cartagena Y, Sangoquiza C, Pincay A, Parra AR, Maiguashca J, et al. Exploring plastic mulching as a strategy for mitigating drought stress and boosting maize yield in the Ecuadorian Andes. Water (Basel). 2024;16(7):1033. https://doi.org/10.3390/w16071033
  55. 55. Joshi R, Singh CB. Mulching effects on stress management of cotton in relation to irrigation and nitrogen levels. Int J Bio-resour Stress Manag. 2018;9(6):733–9. https://doi.org/10.23910/ijbsm/2018.9.6.1921
  56. 56. Zhang D, Zhang Y, Sun L, Dai J, Dong H. Mitigating salinity stress and improving cotton productivity with agronomic practices. Agron. 2023;13(10):2486. https://doi.org/10.3390/agronomy13102486
  57. 57. Dong H, Li W, Tang W, Zhang D. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res. 2009;111(3):269–75. https://doi.org/10.1016/j.fcr.2009.01.001
  58. 58. Yang B, Feng L, Li X, Yang G, Ma Y, Li Y. Effects of plastic film mulching on the spatiotemporal distribution of soil water, temperature and photosynthetic active radiation in a cotton field. Peer J. 2022;10. https://doi.org/10.7717/peerj.13894
  59. 59. Dong H, Li W, Tang W, Zhang D. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron J. 2008;100(6):1640–6. https://doi.org/10.2134/agronj2008.0074
  60. 60. Choudhury A, Bordolui SK. Stimulatory effect of hormonal seed priming in plant tolerance to resist abiotic stress. J Agric Food Sci Biotechnol. 2023;1(3):140–52. https://doi.org/10.58985/jafsb.2023.v01i03.16
  61. 61. Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans‐generational memory. Physiol Plant. 2023;175(2):e13881. https://doi.org/10.58985/jafsb.2023.v01i03.16
  62. 62. Sako K, Nguyen HM, Seki M. Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant Cell Physiol. 2020;61(12):1995-2003. https://doi.org/10.1093/pcp/pcaa119
  63. 63. Singh H, Jassal RK, Kang JS, Sandhu SS, Kang H, Grewal K. Seed priming techniques in field crops -A review. Agric Rev. 2015;36(4):251-64. https://doi.org/10.18805/ag.v36i4.6662
  64. 64. Roy D. Seed priming: new comprehensive approach for an old empirical technique. 2022;117-18. https://doi.org/10.5772/64420
  65. 65. Jisha K, Vijayakumari K, Puthur J. Seed priming for abiotic stress tolerance: An overview. Acta Physiol Plant. 2012;35. https://doi.org/10.1007/s11738-012-1186-5
  66. 66. Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol. 2016;92(8): 112. https://doi.org/10.1093/femsec/fiw112
  67. 67. Shariatmadari MH, Parsa M, Nezami A, Kafi M. Effects of hormonal priming with gibberellic acid on emergence, growth and yield of chickpea under drought stress. Biosci Res.2017 ;14(1):34–41.
  68. 68. Nakkeeran S, Marimuthu T, Renukadevi P, Brindhadevi S, Jogaiah S. 24 - Exploring the biogeographical diversity of Trichoderma for plant health. In: Jogaiah S, editor. Biocontrol agents and secondary metabolites. Woodhead Publishing; 2021. p. 537–71. https://doi.org/10.1016/B978-0-12-822919-4.00024-7
  69. 69. Saikia TP, Barman B, Ferrara GO. Participatory evaluation by farmers of on-farm seed priming in Wheat in Assam, India. Aus Soc Agr. 2006;37(3):403-15. https://doi.org/10.1017/s0014479701003106
  70. 70. Singh A, Tiwari S, Pandey J, Lata C, Singh IK. Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol. 2021;337:57–70. https://doi.org/10.1016/j.jbiotec.2021.06.022
  71. 71. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, et al. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Front Plant Sci. 2022;13:946717. https://doi.org/10.3389/fpls.2022.946717
  72. 72. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J Hazard Mater. 2017;322:2-16. https://doi.org/10.1016/j.jhazmat.2016.05.061
  73. 73. Gupta A, Bharati R, Kubes J, Popelkova D, Praus L, Yang X, et al. Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L. Front Plant Sci. 2024;15:1432258. https://doi.org/10.3389/fpls.2024.1432258
  74. 74. Shallan M, Mm H, Namich A, Ibrahim A. Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Res J Pharm Biol Chem Sci. 2016;7:1540–51.
  75. 75. Turgeon R. The Puzzle of phloem pressure. Plant Physiol. 2010;154(2):578–81. https://doi.org/10.1104/pp.110.161679
  76. 76. Siddiqui MH, Al‐Whaibi MH, Faisal M, Al Sahli AA. Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem. 2014;33(11):2429–37. https://doi.org/10.1002/etc.2697
  77. 77. Bhatt D, Bhatt M, Nath M, Dudhat R, Sharma M, Bisht D. Application of nanoparticles in overcoming different environmental stresses. Stress Biol. 2022;2(1):635–54. https://doi.org/10.1002/9781119552154.ch32
  78. 78. Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL, et al. Identification of drought, heat and combined drought and heat tolerant donors in Maize. Crop Sci. 2013;53(4):1335–46. https://doi.org/10.2135/cropsci2012.09.0545
  79. 79. Papadopoulos CE, Lazaridou A, Koutsoumba A, Kokkinos N, Christoforidis A, Nikolaou N. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresour Technol. 2010;101(6):1812–19. https://doi.org/10.1016/j.biortech.2009.10.016
  80. 80. Floryszak‐Wieczorek J, Arasimowicz M, Milczarek G, Jelen H, Jackowiak H. Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytol. 2007;175(4):718–30. https://doi.org/10.1111/j.1469-8137.2007.02142.x
  81. 81. Rajakumar D, Gurumurthy S. Effect of plant density and nutrient spray on the yield attributes and yield of direct sown and polybag seedling planted hybrid cotton. Agric Sci Digest. 2008;28(3):174-77.
  82. 82. Meena VS, Maurya BR, Verma JP, Meena RS. Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer; 2016. https://doi.org/10.1007/978-81-322-2776-2
  83. 83. Horchani F, Bouallegue A, Mabrouk L, Namsi A, Abbes Z. Nitrate reductase regulation in wheat seedlings by exogenous nitrate: A possible role in tolerance to salt stress. J Plant Nutr Soil Sci. 2023;186(6):633–46. https://doi.org/10.1002/jpln.202300101
  84. 84. Zhang GB, Meng S, Gong JM. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation. Int J Mol Sci. 2018;19(11):3535. https://doi.org/10.3390/ijms19113535
  85. 85. Ye JY, Tian WH, Jin CW. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2022;2(1):4. https://doi.org/10.1007/s44154-021-00030-1
  86. 86. Jia Y, Qin D, Zheng Y, Wang Y. Finding balance in adversity: Nitrate signaling as the key to plant growth, resilience and stress response. Int J Mol Sci. 2023;24(19):14406. https://doi.org/10.3390/ijms241914406
  87. 87. Chen J, Zhao C, Harrison MT, Zhou M. Nitrogen fertilization alleviates barley (Hordeum vulgare L.) waterlogging. Agron. 2024;14(8):1712. https://doi.org/10.3390/agronomy14081712
  88. 88. Saleem MF, Sammar Raza MA, Ahmad S, Khan IH, Shahid AM. Understanding and mitigating the impacts of drought stress in cotton- A review. Pak J Agric Sci. 2016;53(3):609-23. https://doi.org/10.21162/PAKJAS/16.3341
  89. 89. Rochester IJ. Nutripak - a practical guide to cotton nutrition. Australian Cotton Cooperative Research Centre. Narrabri, NSW. 2001.
  90. 90. Shweta VG. Antitranspirants: An effective approach to mitigate the stress in field crops. Int J Curr Microbiol Appl Sci. 2020;9(5):1671–78. https://doi.org/10.3390/plants10010037
  91. 91. Schoving C, Champolivier L, Maury P, Debaeke P. Combining multi-environmental trials and crop simulation to understand soybean response to early sowings under contrasting water conditions. Eur J Agron. 2022;133:126439. https://doi.org/10.1016/j.eja.2021.126439
  92. 92. Mariani L, Ferrante A. Agronomic Management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia and lodging. Horticulturae. 2017;3(4):52. https://doi.org/10.3390/horticulturae3040052
  93. 93. Rangappa K, Das A, Layek J, Basavaraj S, Debnath S, Bhupenchandra I, et al. Conservation tillage and residue management practices in rice improves stress tolerance of succeeding vegetable pea by regulating physiological traits in Eastern Himalayas. Sci Hortic. 2024 ;327:112842. https://doi.org/10.1016/j.scienta.2024.112842
  94. 94. Zhang Y, Liu G, Xu S, Dai J, Li W, Li Z, et al. Nitric oxide reduces the yield loss of waterlogged cotton by enhancing post-stress compensatory growth. Field Crops Res. 2022;283:108524. https://doi.org/10.1016/j.fcr.2022.108524
  95. 95. de Vries TT, Cochrane TA, Talia’uli AL, Kilgour RFT. Influence of wind breaks and shade on evapotranspiration. In: Beighley RE, Killgore MW, editors. World Environmental and Water Resources Congress 2011. Reston, VA: American Society of Civil Engineers; 2011. pp. 2700–708. https://doi.org/10.1061/9780784411735
  96. 96. Martin-Guay MO, Paquette A, Dupras J, Rivest D. The new green revolution: sustainable intensification of agriculture by intercropping. Sci Total Environ. 2018;615:767–72. https://doi.org/10.1016/j.scitotenv.2017.10.024
  97. 97. Ashraf M, Afzal M, Ahmad R, Maqsood MA, Shahzad SM, Aziz A, Akhtar N. Silicon management for mitigating abiotic stress effects in plants. Plant Stress. 2010;4(2):104-14. https://doi.org/10.3389/fpls.2022.819658
  98. 98. Ashraf M, Athar HR, Harris PJC, Kwon TR. Some prospective strategies for improving crop salt tolerance. In Donald LS, editor. Advances in Agronomy. Vol 97. 2008. p. 45–110 https://doi.org/10.1016/S0065-2113(07)00002-8
  99. 99. Khatun M, Sarkar S, Era FM, Islam AKMM, Anwar MP, Fahad S, et al. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agron. 2021;11(12):2374. https://doi.org/10.3390/agronomy11122374
  100. 100. Asif M, Hussain S, Hussain S, Matloob A, Awan DT, Irshad F, et al. Super absorbent polymer application under suboptimal environments: implications and challenges for marginal lands and abiotic stresses. Turkish Journal of Agriculture and Forestry. 2022. https://doi.org/10.55730/tar-2206-8

Downloads

Download data is not yet available.