Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 1 No. 1 (2014)

Therapeutic effect of <em>Ananus comosus</em> peel on 7, 12 dimethylbenz(a)anthracene induced breast cancer in female wistar albino rats

DOI
https://doi.org/10.14719/pst.2014.1.1.8
Submitted
1 December 2013
Published
16-01-2014

Abstract

Ananus comosus, has demonstrated a wide variety of biological activities which make it a good plant source for the treatment of many oxidative stress mediated diseases. The present study was aimed to evaluate therapeutic potential by assaying the activities of liver marker and lysosomal enzymes in 7, 12 dimethylbenz(?)anthracene induced mammary cancer bearing rats. Animals were divided into five groups of six numbers each. Group 1 served as control, group 2 induced mammary carcinogenesis, group 3 and 4 were treated with plant extract and tamoxifen and group 5 served as animals treated with plant extract alone. All the animals were sacrificed after 30 days treatment, serum and mammary tissue are used for the analysis of liver marker and lysosomal marker enzymes using standard protocols. The rats were induced with mammary cancer by DMBA showed altered the levels of liver markers and lysosomal marker enzymes in serum and mammary tissue. On the other hand, oral administrations of ethanolic extract of Ananus comosus peel and standard drug tamoxifen to mammary cancer bearing rats for 30 days, those levels were brought back to near normal. The histology of mammary tissues inevitably supports the biochemical alterations and this was attributed due to the interaction of Ananus comosus peel through the induction or inhibition of metabolism and also the modulating property in the marker and lysosomal enzymes.

References

  1. Al-Attar, A. M. (2004). The Influence of Dietary Grapeseed Oil on DMBA-Induced Liver Enzymes Disturbance in the Frog, Rana ridibunda. Pakistan Journal of Nutrition, 3, 304-309. http://dx.doi.org/10.3923/pjn.2004.304.309
  2. Barrett, A. J. (1972). A new assay for cathepsin B1 and other thiol proteinases. Annals of Biochemistry, 47, 280-293. http://dx.doi.org/10.1016/0003-2697(72)90302-8
  3. Beem, E. P., Hillebrand, M. J., Benckhuijsen, C., & Overdijk, B. (1987). Origin of the increased activity of beta-glucuronidase in the soluble fraction of rat mammary tumors during ovariectomy-induced regression. Cancer Research, 47, 3980-3987. PMid:3607744
  4. Blicharski, J., Lisiewicz, J., & Moszczynski, P. (1983). Lysosomal enzymes of neutrophils in women with breast cancer. Folia Histochem. Cytochem (Krakow), 21, 195-201.
  5. Buckpitt, A. R., Rollins, D. E., & Mitchell, J. R. (1979). Varying effective sulphydryl nucleophiles on acetaminophen oxidation and sulphydryl adduct formation. Biochemistry and Pharmacology, 28, 2941-2946. http://dx.doi.org/10.1016/0006-2952(79)90590-2
  6. Buters, J., Quintanilla-Martinez, L., Schober, W., Soballa, V. J., Hintermair, J., Wolff, T., Gonzalez, F. J., & Greim, H. (2003). CYP1B1 determines susceptibility to low doses of 7, 12-dimethylbenz[a]anthracene induced ovarian cancers in mice: correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis, 24, 327-334. http://dx.doi.org/10.1093/carcin/24.2.327 PMid:12584184
  7. Calvo, P., Barba, J. L., & Cabezas, J. A. (1982). Serum. N-acteyl ß-D-glucosaminidase, beta-Dglucosidase, alpha-D-glucosidase, beta-D-fucosidase, alpha-L-fucosidase and beta-D-galactosidase levels in acute viral hepatitis, pancreatitis, myocardial infarction and breast cancer. Clinica Chimica Acta, 119, 15-19. http://dx.doi.org/10.1016/0009-8981(82)90400-4
  8. Campbell, D. M. (1962). Determination of 5-nucleotidase in blood serum. Biochemistry Jorunal, 82, 348.
  9. Cavailles, V., Augereau, P., & Rochefort, H. (1993). Cathepsin. D gene is controlled by a mixed promoter and estrogens stimulate only TATA dependent transcription in breast cancer cells. Proceedings of National Acadamy of Science, 90, 203-207. http://dx.doi.org/10.1073/pnas.90.1.203
  10. Chan, H. Y., Chen, Z. Y., Tsang, S. C. D., & Leung, L. K. (2002). Baicalein inhibits DMBA-DNA adduct formation by modulating CYP1A1 and CYP1B1 activities. Biomedicine and Pharmacotherapy, 56: 269-275. http://dx.doi.org/10.1016/S0753-3322(02)00192-0
  11. Dunn, W. L. (1974). Hand book of histopathological & histochemical techniques. 3rd Edition. Redwood, Burn, Ltd., Trowbridge and Esher.
  12. Hesham A. El-Beshbishy. 2005. The effect of dimethyl dimethoxy biphenyl dicarboxylate (DDB) against tamoxifen-induced liver injury in rats: DDB use is curative or protective. Journal of Biochemistry and Molecular Biology, 8, 300-306. http://dx.doi.org/10.5483/BMBRep.2005.38.3.300
  13. Fredericks, W. M., Cornelis, J. F., Noorden, V., Aronson, D. C., Maex, F., Bosch, K. S., Jonges, G. N., Vogels, I. M., & James, J. (1990). Quantitative changes in acid phosphatase, alkaline phosphatase and 5'-nucleodidase activity in rat liver after experimentally induced cholestasis. Liver, 10, 158-166. http://dx.doi.org/10.1111/j.1600-0676.1990.tb00452.x
  14. Geetha, A. (1993). Effect of a-tocopherol on doxorubicin-induced changes in rat heart lysosomal enzymes. Indian Journal of Experimental Biology, 31, 288-290. PMid:8500846
  15. Halaby, R. (2002). Lysosomal enzyme-induced cell death in MCF-7 and mammary gland cells. Breast Cancer Research, 4, 70-76. http://dx.doi.org/10.1186/bcr463
  16. Halaby, R., Moreno-Boyle, A., & Pych, J. (2004a). Lysosomal enzymes induce regression of MCF-7 (a human breast carcinoma cell line) tumors growing in athymic mice. Breast Disease, 19, 225-229.
  17. Halaby, R., Moreno-Boyle, A., & Pych, J. (2004b). Lysosomal-mediated apoptosis of human breast tumors growing in athymic mice. Breast Disease, 20, 98-103.
  18. Han, B. S., Fukamachi, K., Takasuka, N., Ohnishi, T., Maeda, M., Yamasaki, T. , & Tsuda, H. (2002). Inhibitory effects of 17-estradiol and 4-n-octylphenol on 7, 12- dimethylbenz[a]anthracene-induced mammary tumor development in human c-Ha-ras protooncogene transgenic rats. Carcinogenesis, 23, 1209-1215. http://dx.doi.org/10.1093/carcin/23.7.1209 PMid:12117780
  19. Helmes, M. H., Modia, A., El-Moneim, A., Moustafe, M. S., EI-Balc, A., & Safinoz, M. E. L. (1998). Clinical value of serum LDH, ceruloplasmin, cathepsin-D and lipid bound sialic acid in monitoring patients with malignant lymphomas. Medical Science Research, 26, 613-617.
  20. Kamdem, L., Siest, G., & Magdalou, J. (1982). Differential toxicity of aflotoxin B1 in male and female rats relationship with hepatic drug metabolizing enzymes. Biochemistry and Pharmacology, 31, 3057-3062. http://dx.doi.org/10.1016/0006-2952(82)90080-6
  21. Kawai, Y., & Anno, K. (1971). Mucopolysaccharides degrading enzymes from the liver of squid Ommastrephes solani pacaficus. I. Hyaluronisae. Biochimica et Biophysica Acta, 242, 428-436. http://dx.doi.org/10.1016/0005-2744(71)90234-8
  22. King, E. J., & Armstrong, A. R. (1943). Estimation of alkaline phosphatase. Canadian Medical Association, 11, 152-156.
  23. King, J. (1965a). The hydrolases-acid and alkaline phosphatase. In Van, D. (Ed.) Practical Clinical Enzymology (191-208 pp). London: Kerstin Company Ltd.
  24. King, J. (1965b). The dehydrogenases or oxidoreductase-Lactate dehydrogenase. In King, J. C. (Ed.) Practical Clinical Enzymology (83 pp). London: Van D Nastrand Company Ltd.
  25. Kobayashi, T., & Kawakubo, T. (1994). Protective investigation of tumor markers and risk assessment in early cancer screening. Cancer, 73, 1946-1953. http://dx.doi.org/10.1002/1097-0142(19940401)73:7<1946::AID-CNCR2820730728>3.0.CO;2-F
  26. Lenaz, G. (2001). The mitochondrial production of reactive oxygen species mechanisms and implications in human pathology. Life, 52, 159-164. PMid:11798028
  27. Li, N., Chen, X., Liao, J., Yang, G., Wang, S., Josephson, Y., Chi, H., Chen, J., Huang, M. T., & Yang, C. S. (2003). Inhibition of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis, 23, 1307-1313. http://dx.doi.org/10.1093/carcin/23.8.1307
  28. Liaudet-Coopman, E., Beaujouin, M., Derocq, D., Garcia, M., Glondu-Lassis, M., Laurent-Matha, V., Prebois, C., Rochefort, H., & Vignon, F. (2006). Cathepsin E: newly discovered functions of a long standing aspartic protease in cancer and apoptosis. Cancer Letters, 237, 167-179. http://dx.doi.org/10.1016/j.canlet.2005.06.007 PMid:16046058
  29. Lippert, M., Papadopoulos, N., & Javadpour, N. R. (1981). Role of lactate dehydrogenase isoenzymes in testicular cancer. Urology, 18, 50-53. http://dx.doi.org/10.1016/0090-4295(81)90495-7
  30. Makpol, S., Shamann, N. A., Jarien, Z., Top, A. H., Khalid, B. A. K., & Wannagan, W. Z. (1997). Different starting times of alpha tochopherol and gamma-tocotrienol supplementation and tumor marker enzyme activities in the rat chemically induced cancer. General Pharmacology, 28, 589-592. http://dx.doi.org/10.1016/S0306-3623(96)00239-X
  31. Mc-Intrye, N., & Rosalki, S. (1992). Biochemical investigation in the management of liver diseases. In: J. Prieto, J. Rodes & D. A. Shafritz (Eds). Hepatobiliary Diseases (39-71 pp), Berlin: Springer-Verlag.
  32. McPherson, K., Steel, C. M., & Dixon, J. M. (2000). Breast cancer epidemiology, risk factors, and genetics. British Medical Journal, 321, 624-628. http://dx.doi.org/10.1136/bmj.321.7261.624 PMid:10977847
  33. Mittal, A., Pathania, V., Agarwal, P. K., Prasad, J., Singh, S., & Goel, H. C. (2001). Influence of Podophyllum hexandrum on endogenous antioxidant defense system in mice: possible role in radio protection. Journal of Ethanopharmacol, 76, 53-262. http://dx.doi.org/10.1016/S0378-8741(01)00243-4
  34. Moss, D. W., Henderson, A. R., & Kochmar, J. T. (1986). Enzymes: principles of diagnostic enzymology and the aminotransferase. In: N. W. Tietz (Ed.). Textbook of clinical chemistry (663-678 pp), Philadelphia, PA: Saunders.
  35. Nandakumar, N., Haribabu, L., Perumal, S., & Balasubramanian, M. P. (2011). Therapeutic effect of hesperidin with reference to biotransformation, lysosomal and mitochondrial TCA cycle enzymes against 7, 12-dimethylbenz(a)anthracene-induced experimental mammary cellular carcinoma. Biomedicine and Aging Pathology, 1, 158-168. http://dx.doi.org/10.1016/j.biomag.2011.09.001
  36. Nebert, D. N., Dalton, T. P., Okey, A. B. & Gonzalez, F. J. (2004). Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. Journal of Biological Chemistry, 279, 23847-23850. http://dx.doi.org/10.1074/jbc.R400004200 PMid:15028720
  37. Okafor, O. Y., Erukainure, O. L., Ajiboye, J., Adejobi, R. O., Owolabi, F. O., & Kosoko, S. B. (2011). Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats. Asian Pacific Journal of Tropical Biomedicine, 1, 12-14. http://dx.doi.org/10.1016/S2221-1691(11)60060-9
  38. Persijn, J. P., & Van der Slik, W. (1976). A new method for the determination of gamma glutamyl transferase in serum. Journal of Clinical Chemistry and Clinical Biochemistry, 14, 421-427. PMid:9466
  39. Reitman, S., & Frankel, S. (1957). A calorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminase. Americal Journal of Clinical Pathology, 28, 56-63. PMid:13458125
  40. Rochefort, H., Garcia, M., Glondu, M., Laurent, V., Liaudet, E., & Rey, J. M. (2000). Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 review. Clinica Chimica Acta, 291, 157-170. http://dx.doi.org/10.1016/S0009-8981(99)00226-0
  41. Rodwell, V. W. (1996). Catabolism of Protein & of aminoacid nitrogen. In: R. K. Murray, D. K. Granner, P. K. Myes & V. W. Rodwell (Eds). A Lange medical book, Harper's Biochemistry (301-302, 310 pp), 24th edition, Stamford, Connecticut: Appelton and Lange Inc.
  42. Sapolsky, A. L., Altman, R. D., & Howell, D. S. (1973). Cathepsin D activity in normal and osteoarthritic human cartilage. Federation Proceedings, 32, 1489-1493. PMid:4121833
  43. Sharma, A., Mathur, R., & Shukla, S. (1995). Hepatoprotection of a propriety herbal formulation against carbon tetrachloride intoxication. Indian Drugs, 32, 120-124.
  44. Suzuki, J. S., Nishimura, N., Zhang, B., Nakatsuru, Y., Kobayashi, S., Satoh, M., & Tohyama, C. (2003). Metallothionein deficiency enhances skin carcinogenesis induced by 7, 12 dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate in Metallothioenin-null mice. Carcinogenesis, 24, 1123-1132. http://dx.doi.org/10.1093/carcin/bgg052 PMid:12807749
  45. Tsuchiya, Y., Nakajima, N., & Yokoi, T. (2005). Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Letters, 227, 115-124. http://dx.doi.org/10.1016/j.canlet.2004.10.007 PMid:16112414
  46. Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57-149. http://dx.doi.org/10.1016/S1382-6689(02)00126-6
  47. Vinothini, G., Manikandan, P., Anandan, R., & Nagini, S. (2009). Chemoprevention of rat mammary carcinogenesis by Azadirachta indica leaf fractions: Modulation of hormone status, xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation and apoptosis. Food and Chemical Toxicology, 47, 1852-1863. http://dx.doi.org/10.1016/j.fct.2009.04.045 PMid:19427891
  48. Walia, M., Maharajan, M., & Singh, K. (1995). Serum adenosine deaminase, 5'-nucleotidase and alkaline phosphates in breast cancer patients. Indian Journal of Medical Research, 101, 247-249. PMid:7672835
  49. Yao, D., Jiang, D., Huang, Z., Lu, J., Tao, J. O., Yu, Z., & Meng, X. (2000). Abnormal expression of hepatoma specific γ-glutamy1 transferase and alteration γ -glutamy1 transferase gene methylation status in patients with hepatocellular carcinoma. Cancer, 88, 761-769. http://dx.doi.org/10.1002/(SICI)1097-0142(20000215)88:4<761::AID-CNCR5>3.0.CO;2-5

Downloads

Download data is not yet available.