Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Advances in site-specific weed management techniques for sustainable crop production

DOI
https://doi.org/10.14719/pst.8262
Submitted
14 March 2025
Published
29-06-2025

Abstract

Weeds are amidst the major factors that can adversely affect crop yield. Current weed control methods, such as use of synthetic herbicides and mechanical methods, are widely used and effective, but come with drawbacks like environmental impacts, development of herbicide-resistant weeds and limited labor availability. There is an urgent need to address critical issues such as the use of harmful pesticides, pollution control and the environmental impact on agricultural practices. In recent times, innovative methods have been proposed to address existing limitations and transition toward more ecofriendly weed control approaches. The advancement in automation and information technologies has revealed a new era for weed management, allowing physical and chemical control methods to be tailored for the spatial and temporal variability of weed distributions in agricultural fields. Non-chemical weed control methods could reduce reliance on herbicides and soil tillage. Sensor technologies, including spectral imaging, remote sensing and artificial intelligence (AI), are employed to accurately identify and classify weeds. These classifications are then utilized by automated robots to carry out precise mechanical weeding operations. Additionally, imaging and AI-guided robots, in conjunction with unmanned aerial vehicles (UAVs), can assist in both intra-row and inter-row weeding, alongside targeted patch spraying. Site-specific weed management showed around 50 % saving of herbicides by reducing the application dose. This review examines site-specific weed management technologies, assesses their advantages and provides insights onto their potential implementation in agriculture. Nonetheless, further research is needed to incorporate these technologies into conventional agricultural practices.

References

  1. 1. United Nations. Department of economic and social affairs, Population division. World Population Prospects 2022: Summary of Results. 2022.
  2. 2. Westwood JH, Charudattan R, Duke SO, Fennimore SA, Marrone P, Slaughter DC, et al. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018;66(3):275-85. https://doi.org/10.1017/wsc.2017.78
  3. 3. Wang A, Zhang W, Wei X. A review on weed detection using ground-based machine vision and image processing techniques. Comput Electron Agric. 2019;158:226-40. https://doi.org/10.1016/j.compag.2019.02.005
  4. 4. Oerke EC. Crop losses to pests. J Agric Sci. 2006;144(1):31-43. https://doi.org/10.1017/S0021859605005708
  5. 5. Gnanavel I. Eco-friendly weed control options for sustainable agriculture. Sci Int. 2015;3(2):37-47. https://doi.org/10.17311/sciintl.2015.37.47
  6. 6. Esposito M, Crimaldi M, Cirillo V, Sarghini F, Maggio A. Drone and sensor technology for sustainable weed management: A review. Chem Biol Technol Agric. 2021;8:1-11. https://doi.org/10.1186/s40538-021-00217-8
  7. 7. Pathak H, Igathinathane C, Howatt K, Zhang Z. Machine learning and handcrafted image processing methods for classifying common weeds in corn field. Smart Agric Technol. 2023;5:100249. https://doi.org/10.1016/j.atech.2023.100249
  8. 8. Wu X, Aravecchia S, Lottes P, Stachniss C, Pradalier C. Robotic weed control using automated weed and crop classification. J Field Robot. 2020;37(2):322-40. https://doi.org/10.1002/rob.21938
  9. 9. Roslim MH, Juraimi AS, Che’Ya NN, Sulaiman N, Manaf MN, Ramli Z, et al. Using remote sensing and an unmanned aerial system for weed management in agricultural crops: A review. Agron. 2021;11(9):1809. https://doi.org/10.3390/agronomy11091809
  10. 10. Monteiro A, Santos S. Sustainable approach to weed management: The role of precision weed management. Agron. 2022;12(1):118. https://doi.org/10.3390/agronomy12010118
  11. 11. Andreasen C, Vlassi E, Salehan N, Johannsen KS, Jensen SM. Laser weed seed control: Challenges and opportunities. Front Agron. 2024c;6:1342372. https://doi.org/10.3389/fagro.2024.1342372
  12. 12. Worrest CR, Caldwell MM. Stratospheric ozone reduction, Solar ultraviolet radiation and plant life: NATO advanced research workshop, 1983.
  13. 13. Liebman M, Gallandt ER, Jackson LE. Many little hammers: ecological management of crop-weed interactions. Ecol Agric. 1997;1:291-343. https://doi.org/10.1016/b978-012378260-1/50010-5
  14. 14. N'cho SA, Mourits M, Rodenburg J, Oude Lansink A. Inefficiency of manual weeding in rainfed rice systems affected by parasitic weeds. Agric Econ. 2019;50(2):151-63. https://doi.org/10.1111/agec.12473
  15. 15. Hussain M, Farooq S, Merfield C, Jabran K. Mechanical weed control. In. Non-chemical weed control. 2018:133-55. https://doi.org/10.1016/B978-0-12-809881-3.00008-5
  16. 16. Mathukia RK, Jat RA. Principles and practices of weed management(1st ed), ICAR.2022.
  17. 17. Upadhyaya MK, Blackshaw RE. Non-chemical weed management: Principles, concepts and technology. Cabi. 2007. https://doi.org/10.2134/jeq2008.0006br
  18. 18. MacLaren C, Storkey J, Menegat A, Metcalfe H, Dehnen-Schmutz K. An ecological future for weed science to sustain crop production and the environment. A review. Agron Sustain Dev. 2020;40:1-29. https://doi.org/10.1007/s13593-020-00631-6
  19. 19. Chauhan BS, Matloob A, Mahajan G, Aslam F, Florentine SK, Jha P. Emerging challenges and opportunities for education and research in weed science. Front Plant Sci. 2017;8:1537. https://doi.org/10.3389/fpls.2017.01537
  20. 20. Thorp KR, Tian LF. A review on remote sensing of weeds in agriculture. Precis Agric. 2004;5(5):477-508. https://doi.org/10.1007/s11119-004-5321-1
  21. 21. Wang P, Tang Y, Luo F, Wang L, Li C, Niu Q, et al. Weed25: A deep learning dataset for weed identification. Front Plant Sci. 2022;13:1053329. https://doi.org/10.3389/fpls.2022.1053329
  22. 22. Ruigrok T, van Henten E, Booij J, van Boheemen K, Kootstra G. Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sens. 2020;20(24):7262. https://doi.org/10.3390/s20247262
  23. 23. Rasmussen J, Nielsen J, Garcia-Ruiz F, Christensen S, Streibig JC. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res. 2013;53(4):242-48. https://doi.org/10.1111/wre.12026
  24. 24. Partel V, Kakarla SC, Ampatzidis Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput Electron Agric. 2019;157:339-50. https://doi.org/10.1016/j.compag.2018.12.048
  25. 25. Pathak H, Igathinathane C, Howatt K, Zhang Z. Machine learning and handcrafted image processing methods for classifying common weeds in corn field. Smart Agric Technol. 2023;5:100249. https://doi.org/10.1016/j.atech.2023.100249
  26. 26. Bidve V, Mane S, Tamkhade P, Pakle G. Weed detection by using image processing. Indones J Electr Eng Comput Sci. 2023;30(1):341-49. https://doi.org/10.11591/ijeecs.v30.i1.pp341-349
  27. 27. Ahmad M, Adnan A, Chehri A. A real-time IoT and image processing based weeds classification system for selective herbicide. In. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). 2022;1-5. https://doi.org/10.1109/VTC2022-Spring54318.2022.9860524
  28. 28. Wang J, Yao X, Nguyen GK. A Real-time IoT and image processing based weeds classification system for selective herbicide. In. Fourteenth International Conference on Digital Image Processing (ICDIP 2022). 2022. http://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860524
  29. 29. Manikandakumar M, Karthikeyan P. Weed classification using particle swarm optimization and deep learning models. Comput Syst Sci Eng. 2023;44(1):913-27. https://doi.org/10.32604/csse.2023.025434
  30. 30. Saleem MH, Velayudhan KK, Potgieter J, Arif KM. Weed identification by single-stage and two-stage neural networks: A study on the impact of image resizers and weights optimization algorithms. Front Plant Sci. 2022;13:850666. https://doi.org/10.3389/fpls.2022.850666
  31. 31. Kim SB, Kim DS, Mo X. An image segmentation technique with statistical strategies for pesticide efficacy assessment. Plos One. 2021;16(3):e0248592. https://doi.org/10.1371/journal.pone.0248592
  32. 32. Le VNT, Ahderom S, Alameh K. Performances of the lbp based algorithm over cnn models for detecting crops and weeds with similar morphologies. Sens. 2020;20(8):2193. https://doi.org/10.3390/s20082193
  33. 33. Coleman GRY, Salter WT. More eyes on the prize: open-source data, software and hardware for advancing plant science through collaboration. AoB Plants. 2023;15(2):plad010. https://doi.org/10.1093/aobpla/plad010
  34. 34. Louargant M, Jones G, Faroux R, Paoli JN, Maillot T, Gée C, et al. Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sens. 2018;10(5):761. https://doi.org/10.3390/rs10050761
  35. 35. Ip RH, Ang LM, Seng KP, Broster JC, Pratley JE. Big data and machine learning for crop protection. Comput Electron Agric. 2018;151:376-83. https://doi.org/10.1016/j.compag.2018.06.008
  36. 36. Murad NY, Mahmood T, Forkan AR, Morshed A, Jayaraman PP, Siddiqui MS. Weed detection using deep learning: A systematic literature review. Sens. 2023;23(7):3670. https://doi.org/10.3390/s23073670
  37. 37. Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput Electron Agric. 2018;145:153-60. https://doi.org/10.1016/j.compag.2017.12.032
  38. 38. Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019;2:1-2. https://doi.org/10.1016/j.aiia.2019.05.004
  39. 39. Rai N, Zhang Y, Ram BG, Schumacher L, Yellavajjala RK, Bajwa S, et al. Applications of deep learning in precision weed management: A review. Comput Electron Agric. 2023;206:107698. https://doi.org/10.1016/j.compag.2023.107698
  40. 40. Hasan AM, Sohel F, Diepeveen D, Laga H, Jones MG. A survey of deep learning techniques for weed detection from images. Comput Electron Agric. 2021;184:106067. https://doi.org/10.1016/j.compag.2021.106067
  41. 41. Bonneau M, Gaba S, Peyrard N, Sabbadin R. Reinforcement learning-based design of sampling policies under cost constraints in Markov random fields: Application to weed map reconstruction. Comput Statist Data Anal. 2014;72:30-44. https://doi.org/10.1016/j.csda.2013.10.002
  42. 42. Alulema JCM, Lozano ÁGG, Ramos JMO, Gomez JAN. Machine learning algorithms for weed management using KNN. Ann For Res. 2023;66(1):2330–40.
  43. 43. Pérez-Ortiz M, Peña JM, Gutiérrez PA, Torres-Sánchez J, Hervás-Martínez C, López-Granados F. Selecting patterns and features for between-and within-crop-row weed mapping using UAV-imagery. Expert Syst Appl. 2016;47:85-94. https://doi.org/10.1016/j.eswa.2015.10.043
  44. 44. Lottes P, Behley J, Milioto A, Stachniss C. Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robot. Autom Lett. 2018;3(4):2870-7. https://doi.org/10.1109/LRA.2018.2846289
  45. 45. Asad MH, Bais A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network. Inf Process Agric. 2020;7(4):535-45. https://doi.org/10.1016/j.inpa.2019.12.002
  46. 46. Ferreira A., Freitas D., Silva G., Pistori H., Folhes M. Unsupervised deep learning and semi-automatic data labeling in weed discrimination. Comput. Electron. Agric. 2019;165:104963. https://doi.org/10.1016/j.compag.2019.104963
  47. 47. Sabzi S, Abbaspour-Gilandeh Y, García-Mateos G. A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput Ind. 2018;98:80-9. https://doi.org/10.1016/j.compind.2018.03.001
  48. 48. Andreasen C, Rakhmatulin I, Saberi M, Zang Z. Weed control with laser beams: An eco-friendly alternative to herbicides and mechanical weed control. In. AIP Conf Proc. 2024; 2924(1):040001. https://doi.org/10.1063/5.0182677
  49. 49. Mizuno A, Tenma T, Yamano N. Destruction of weeds by pulsed high voltage discharges. In. Conference Conf Rec of the 1990 IEEE Ind App Soc Ann Meet., USA. 1990;720-7. https://doi.org/10.1109/ias.1990.152264
  50. 50. Lati RN, Rosenfeld L, David IB, Bechar A. Power on! Low-energy electrophysical treatment is an effective new weed control approach. Pest Manag Sci. 2021;77(9):4138-47. https://doi.org/10.1002/ps.6451
  51. 51. Schreier H, Bish M, Bradley KW. The impact of electrocution treatments on weed control and weed seed viability in soybean. Weed Technol. 2022;36(4):481-9. https://doi.org/10.1017/wet.2022.56
  52. 52. Moore LD, Jennings KM, Monks DW, Boyette MD, Leon RG, Jordan DL, et al. Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut and sweetpotato. Weed Technol. 2023;37(1):53-9. https://doi.org/10.1017/wet.2023.1
  53. 53. Vigneault C, Benoit DL and McLaughlin NB, Energy aspects of weed electrocution. Rev. Weed Sci. 1990;5:15-26.
  54. 54. RootWave Top Fruit – RootWave [Internet]. [cited 2024 Aug 14]. https://rootwave.com/portfolio-item/fruit/#top
  55. 55. Small Crops – Zasso [Internet]. [cited 2024 Aug 14]. https://zasso.com/portfolio/small-crops/
  56. 56. Nucrop - Hybrid Electric Crop Protection - [Internet]. [cited 2024 Aug 18]. https://www.nucrop.com/#product
  57. 57. About the LASCO Lightning Weeder [Internet]. [cited 2024 Aug 18]. https://www.lightningweeder.com/about
  58. 58. Products - The Weed Zapper [Internet]. [cited 2024 Aug 18]. https://theweedzapper.oldschoolmanufacturing.com/products/
  59. 59. Bertram A, Meyer J. Modelling of heat transfer in thermal weed control as a basis for equipment optimization. Agrartechnische Forschung. 1997;3(2),86-98.
  60. 60. Bauer MV, Marx C, Bauer FV, Flury DM, Ripken T, Streit B. Thermal weed control technologies for conservation agriculture-A review. Weed Res. 2020;60(4):241-50. https://doi.org/10.1111/wre.12418
  61. 61. Hoyle JA, McElroy JS, Rose JJ. Weed control using an enclosed thermal heating apparatus. Weed Technol. 2012;26(4):699-707. https://doi.org/10.1614/wt-d-12-00057.1
  62. 62. Peruzzi A, Martelloni L, Frasconi C, Fontanelli M, Pirchio M, Raffaelli M. Machines for non-chemical intra-row weed control in narrow and wide-row crops: a review. J Agric Eng. 2017;48(2):57-70. https://doi.org/10.4081/jae.2017.583
  63. 63. Chehade LA, Fontanelli M, Martelloni L, Frasconi C, Raffaelli M, Peruzzi A. Effects of flame weeding on organic garlic production. Horttechnology. 2018;28(4):502-8. https://doi.org/10.21273/HORTTECH04081-18
  64. 64. Rakhmatulin I, Kamilaris A, Andreasen C. Deep neural networks to detect weeds from crops in agricultural environments in real-time: A review. Remote Sens. 2021;13(21):4486. https://doi.org/10.3390/rs13214486
  65. 65. Rakhmatulin I, Andreasen C. A concept of a compact and inexpensive device for controlling weeds with laser beams. Agron. 2020;10(10):1616. https://doi.org/10.2139/ssrn.3716607
  66. 66. Coleman G, Betters C, Squires C, Leon-Saval S, Walsh M. Low energy laser treatments control annual ryegrass (Lolium rigidum). Front Agron. 2021;2:601542. https://doi.org/10.3389/fagro.2020.601542
  67. 67. Andreasen C, Vlassi E, Salehan N. Laser weeding: Opportunities and challenges for couch grass (Elymus repens (L.) Gould) control. Sci Rep. 2024b;14(1):11173. https://doi.org/10.1038/s41598-024-61742-8
  68. 68. Krupanek J, de Santos PG, Emmi L, Wollweber M, Sandmann H, Scholle K, et al. Environmental performance of an autonomous laser weeding robot- A case study. Int J Life Cycle Assess. 2024;29:1021-52. https://doi.org/10.1007/s11367-024-02295-w
  69. 69. Gonzalez-de-Santos P, Ribeiro A, Fernandez-Quintanilla C, Lopez-Granados F, Brandstoetter M, Tomic S, et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis Agric. 2017;18(4):574-614. https://doi.org/10.1007/s11119-016-9476-3
  70. 70. Gerhards R, Sanchez DA, Hamouz P, Peteinatos GG, Christensen S, Fernandez-Quintanilla C. Advances in site-specific weed management in agriculture-A review. Weed Res. 2022;62(2):123-33. https://doi.org/10.1111/wre.12526
  71. 71. Zawada M, Legutko S, Gościańska-Łowińska J, Szymczyk S, Nijak M, Wojciechowski J, et al. Mechanical weed control systems: Methods and effectiveness. Sustain. 2023;15(21):15206. https://doi.org/10.3390/su152115206
  72. 72. Bangale R, Kumar M. Robot-based weed identification and control system. In. (eds. Khatri N, Vyas AK, Iwendi C, Chatterjee P). Preci Agrifor Sust- Use of Smart Sensors, Actuators and Decision Support Systems. 2024. https://doi.org/10.1201/9781003435228-11
  73. 73. Jiang W, Quan L, Wei G, Chang C, Geng T. A conceptual evaluation of a weed control method with post-damage application of herbicides: A composite intelligent intra-row weeding robot. Soil Tillage Res. 2023;234:105837. https://doi.org/10.1016/j.still.2023.105837
  74. 74. Rasmussen J, Griepentrog HW, Nielsen J, Henriksen CB. Automated intelligent rotor tine cultivation and punch planting to improve the selectivity of mechanical intra-row weed control. Weed Res. 2012;52(4):327-37. https://doi.org/10.1111/j.1365-3180.2012.00922.x
  75. 75. Gerhards R, Risser P, Spaeth M, Saile M, Peteinatos G. A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.). Weed Res. 2024;64(1):42-53. https://doi.org/10.1111/wre.12603
  76. 76. Spykman O, Emberger-Klein A, Gabriel A, Gandorfer M. Autonomous agriculture in public perception - German consumer segments’ view of crop robots. Comput Electron Agric. 2022;202:107385. https://doi.org/10.1016/j.compag.2022.107385
  77. 77. Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet Things. 2022;18:100187. https://doi.org/10.1016/j.iot.2020.100187
  78. 78. Torres-Sánchez J, López-Granados F, De Castro AI, Peña-Barragán JM. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One. 2013;8(3):e58210. https://doi.org/10.1371/journal.pone.0058210
  79. 79. De Castro AI, Torres-Sánchez J, Peña JM, Jiménez-Brenes FM, Csillik O, López-Granados F. An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 2018;10(2):285. https://doi.org/10.3390/rs10020285
  80. 80. Chen Y, Qi H, Li G, Lan Y. Weed control effect of unmanned aerial vehicle (UAV) application in wheat field. Int J Precis Agric Avn2019;2(2). https://doi.org/10.33440/j.ijpaa.20190202.45
  81. 81. Ahmad F, Qiu B, Dong X, Ma J, Huang X, Ahmed S, et al. Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput Electron Agric. 2020;172:105350. https://doi.org/10.1016/j.compag.2020.105350
  82. 82. Ramesh T, Madhusree S, Rathika S, Meena S, Raja K. Drone based herbicide application in greengram (Vigna radiata). Indian J Agric Sci 2024;94(3):329-32. https://doi.org/10.56093/ijas.v94i3.144541
  83. 83. Takekawa JY, Hagani JS, Edmunds TJ, Collins JM, Chappell SC, Reynolds WH. The sky is not the limit: Use of a spray drone for the precise application of herbicide and control of an invasive plant in managed wetlands. Remote Sens. 2023;15(15):3845. https://doi.org/10.3390/rs15153845
  84. 84. Pranaswi D, Jagtap MP, Shinde GU, Khatri N, Shetty S, Pare S. Analyzing the synergistic impact of UAV-based technology and knapsack sprayer on weed management, yield-contributing traits and yield in wheat (Triticum aestivum L.) for enhanced agricultural operations. Comput Electron Agric. 2024;219:108796. https://doi.org/10.1016/j.compag.2024.108796
  85. 85. Matzrafi M, Herrmann I, Nansen C, Kliper T, Zait Y, Ignat T, et al. Hyperspectral technologies for assessing seed germination and trifloxysulfuron-methyl response in Amaranthus palmeri (Palmer amaranth). Front Plant Sci. 2017;8:474. https://doi.org/10.3389/fpls.2017.00474
  86. 86. Spaeth M, Machleb J, Peteinatos GG, Saile M, Gerhards R. Smart harrowing-adjusting the treatment intensity based on machine vision to achieve a uniform weed control selectivity under heterogeneous field conditions. Agron. 2020;10(12):1925. https://doi.org/10.3390/agronomy10121925
  87. 87. Gómez-Candón D, López-Granados F, Caballero-Novella JJ, García-Ferrer A, Peña-Barragán JM, Jurado-Expósito M, et al. Sectioning remote imagery for characterization of Avena sterilis infestations. Part B: Efficiency and economics of control. Precis. Agric. 2012;13(3):337-50. https://doi.org/10.1007/s11119-011-9250-5
  88. 88. Tian F, Vieira CC, Zhou J, Zhou J, Chen P. Estimation of off-target dicamba damage on soybean using UAV imagery and deep learning. Sens. 2023;23(6):3241. https://doi.org/10.3390/s23063241
  89. 89. Sapkota R, Stenger J, Ostlie M, Flores P. Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques. Sci Rep. 2023;13(1):6548. https://doi.org/10.1038/s41598-023-33042-0
  90. 90. Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate separating and sensing for precision agriculture and environmental protection in the era of smart materials. Environ Sci Technol. 2023;57(27):9898-924. https://doi.org/10.1021/acs.est.3c01269
  91. 91. Nikolić N, Rizzo D, Marraccini E, Gotor AA, Mattivi P, Saulet P, et al. Site-and time-specific early weed control is able to reduce herbicide use in maize-a case study. Ital J Agron. 2021;16(4):1780. https://doi.org/10.4081/ija.2021.1780
  92. 92. Duddu HS, Johnson EN, Willenborg CJ, Shirtliffe SJ. High-throughput UAV image-based method is more precise than manual rating of herbicide tolerance. Plant Phenomics. 2019;2019. https://doi.org/10.34133/2019/6036453
  93. 93. Thomas LF, Änäkkälä M, Lajunen A. Weakly supervised perennial weed detection in a barley field. Remote Sens. 2023;15(11):2877. https://doi.org/10.3390/rs15112877
  94. 94. Saile M, Spaeth M, Gerhards R. Evaluating sensor-based mechanical weeding combined with pre- and post-emergence herbicides for integrated weed management in cereals. Agron. 2022;12(6):1465. https://doi.org/10.3390/agronomy12061465
  95. 95. Dubey JK, Sharma A. Pesticide residues and international regulations. Sustainable Management of Potato Pests and Diseases (eds. Chakrabarti SK, Sharma S &Shah MA). 2022; 353-67. https://doi.org/10.1007/978-981-16-7695-6_14
  96. 96. European Union. Farm to fork strategy - For a fair, healthy and environmentally-friendly food system. European Commission: 2020 [cited 2024 Sept 1]. Available from: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
  97. 97. Khan N, Ray RL, Sargani GR, Ihtisham M, Khayyam M, Ismail S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustain. 2021;13(9):4883. https://doi.org/10.3390/su13094883
  98. 98. Pérez-Ruíz M, Slaughter DC, Fathallah FA, Gliever CJ, Miller BJ. Co-robotic intra-row weed control system. Biosyst Eng. 2014;126:45-55. https://doi.org/10.1016/j.biosystemseng.2014.07.009
  99. 99. Gerhards R, Oebel H. Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res. 2006;46(3):185-93. https://doi.org/10.1111/j.1365-3180.2006.00504.x
  100. 100. Balafoutis AT, van Evert FK, Fountas S. Smart farming technology trends: Economic and environmental effects, labor impact and adoption readiness. Agron. 2020;10(5):743. https://doi.org/10.3390/agronomy10050743

Downloads

Download data is not yet available.