Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Agronomic biofortification of cereals with micronutrients: A systematic review

DOI
https://doi.org/10.14719/pst.8292
Submitted
15 March 2025
Published
06-07-2025 — Updated on 14-07-2025
Versions

Abstract

Micronutrient malnutrition is a global issue, particularly in developing regions of Asia and Africa, where a substantial portion of the population relies heavily on cereal grains as their staple food source. This deficiency arises due to an inadequate intake of essential micronutrients such as zinc and iron, in their daily diets. Biofortification offers a readily accessible and expedient solution for biofortifying cereal grains with these crucial micronutrients. This approach is particularly beneficial for the poorest rural communities. These populations often lack the means to afford mineral supplements or animal-derived products, which are typically richer sources of these micronutrients. From an agronomic biofortification perspective foliar application of zinc and iron fertilizers is considered more effective and requires lower quantities compared to soil application. For selenium (Se), both soil and foliar applications have been found to be effective with sodium selenate being more effective than selenite for soil applications. Even in scenarios where cultivars or genetically modified crops with inherently higher zinc and iron content in their grains are developed adequate fertilization with these micronutrients will still be necessary. Therefore, in the long run agronomic biofortification serves as a complementary approach to plant breeding and modern biotechnology aiming to increase the overall micronutrient content in the food supply. In this review, we will explore the synergistic role of agronomic biofortification alongside plant breeding and biotechnology, highlighting its potential to enhance the micronutrient density of staple crops and address global micronutrient malnutrition.

References

  1. 1. Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, et al. Nitrogen fixation in cereals. Frontiers in Microbiology. 2018;9:1794. https://doi.org/10.3389/fmicb.2018.01794
  2. 2. Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, et al. Vitamins in cereals: a critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Frontiers in Nutrition. 2021;8:586815. https://doi.org/10.3389/fnut.2021.586815
  3. 3. Kumar P, Kumar A, Dhiman K, Srivastava DK. recent progress in cereals biofortification to alleviate malnutrition in india: an overview. Agricultural biotechnology: latest research and trends. Singapore: Springer; 2022. p. 253-80. https://doi.org/10.1007/978-981-16-2339-4_11
  4. 4. Waters BM, Grusak MA. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytologist. 2008;179(4):1033-47. https://doi.org/10.1111/j.1469-8137.2008.02544.x
  5. 5. Khush GS, Lee S, Cho J-I, Jeon J-S. Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports. 2012;6:195-202. https://doi.org/10.1007/s11816-012-0216-5
  6. 6. Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. Plant Growth Regulation. 2023;100(2):355-71. https://doi.org/10.1007/s10725-023-00968-4
  7. 7. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, et al. Increasing CO2 threatens human nutrition. Nature. 2014;510(7503):139-42. https://doi.org/10.1038/nature13179
  8. 8. Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):19792. https://doi.org/10.1038/srep19792
  9. 9. Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and soil. 2008;302:1-17. https://doi.org/10.1007/s11104-007-9466-3
  10. 10. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytologist. 2007;173(4):677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  11. 11. Zaib M, Zubair H, Afzal AH, Naseem M, Maryam D, Batool S, et al. Biofortification for enhancement of micronutrient. Indian Journal of Pure & Applied Biosciences. 2023;11(6):53-67. http://doi.org/10.18782/2582-2845.9035
  12. 12. Zimmermann R, Qaim M. Potential health benefits of Golden Rice: a Philippine case study. Food Policy. 2004;29(2):147-68. https://doi.org/10.1016/j.foodpol.2004.03.001
  13. 13. Augustine R, Kalyanasundaram D. Agronomic biofortification of food crops with micronutrients. Plant Archives. 2020;20:1383-7.
  14. 14. Lyons GH, Lewis J, Lorimer MF, Holloway RE, Brace DM, Stangoulis JC, et al. High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Journal of Food, Agriculture and Environment. 2004;2(1):171-8.
  15. 15. Ujowundu CO, Ukoha AI, Agha CN, Nwachukwu N, Igwe KO, Kalu FN. Effects of potassium iodate application on the biomass and iodine concentration of selected indigenous Nigerian vegetables. African Journal of Biotechnology 2010;9(42):7141-7. https://doi.org/10.5897/AJB09.1268
  16. 16. Combs GF. Selenium in global food systems. British Journal of Nutrition. 2001;85(5):517-47. https://doi.org/10.1079/BJN2000280
  17. 17. Lyons G, Cakmak I. Agronomic biofortification of food crops with micronutrients. In: Fertilizing crops to improve human health: a scientific review. Vol. 1. International Plant Nutrition Institute & International Fertilizer Industry Association; 2012. p. 97-122.
  18. 18. Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet. 2008;371(9608):243-60. https://doi.org/10.1016/S0140-6736(07)61690-0
  19. 19. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology. 2005;23(4):482-7. https://doi.org/10.1038/nbt1082
  20. 20. Bouis HE, Saltzman A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 2017;12:49-58. https://doi.org/10.1016/j.gfs.2017.01.009
  21. 21. Kadapa S, Gunturi A, Gundreddy R, Kalwala SR, Mogallapu UB. Agronomic biofortification of millets: new way to alleviate malnutrition. Millets-Rediscover Ancient Grains: IntechOpen; 2023. https://doi.org/10.5772/intechopen.110805
  22. 22. McGuire S. FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO, 2015. Advances in Nutrition. 2015;6(5):623-4. https://doi.org/10.3945/an.115.009936
  23. 23. Yadava D, Choudhury P, Hossain F, Kumar D. Biofortified varieties: sustainable way to alleviate malnutrition. New Delhi: Indian Council of Agricultural Research; 2017.
  24. 24. Roy C, Kumar S, Ranjan RD, Kumhar SR, Govindan V. Genomic approaches for improving grain zinc and iron content in wheat. Frontiers in Genetics. 2022;13:1045955. https://doi.org/10.3389/fgene.2022.1045955
  25. 25. Lagoriya DS, Harishma S, Singh SK. Agronomical approaches for biofortification of cereal crops. Biofortification in cereals: Progress and prospects: Springer; 2023. p. 1-19. https://doi.org/10.1007/978-981-19-4308-9_1
  26. 26. Poursarebani N, Nussbaumer T, Šimková H, Šafár J, Witsenboer H, Van Oeveren J, et al. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. The Plant Journal. 2014;79(2):334-47. https://doi.org/10.1111/tpj.12550
  27. 27. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, et al. Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. Journal of Cleaner Production. 2016; 112:1258-60. https://doi.org/10.1016/j.jclepro.2015.05.122
  28. 28. Virmani SS, Ahmed MI. Rice breeding for sustainable production. In: Breeding major food staples. Blackwell Publishing; 2007. p. 141-91. https://doi.org/10.1002/9780470376447
  29. 29. Dubock A. An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake. Agriculture & Food Security. 2017;6(1):59. https://doi.org/10.1186/s40066-017-0135-3
  30. 30. Senguttuvel P, Neeraja CN, Jaldhani V, Beulah P, Sai Prasad SV, Subba Rao LV, et al. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. Frontiers in Plant Science. 2023;14:1138408. https://doi.org/10.3389/fpls.2023.1138408
  31. 31. Hui X, Luo L, Chen Y, Palta JA, Wang Z. Zinc agronomic biofortification in wheat and its drivers: a global meta-analysis. Nature Communications. 2025;16(1):3913. https://doi.org/10.1038/s41467-025-58397-y
  32. 32. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports. 2017;36:745-57. https://doi.org/10.1007/s00299-017-2118-z
  33. 33. Cakmak I, Kalayci M, Kaya Y, Torun A, Aydin N, Wang Y, et al. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry. 2010;58(16):9092-102. https://doi.org/10.1021/jf101197h
  34. 34. Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, et al. Biofortification—A frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules. 2022;27(4):1340. https://doi.org/10.3390/molecules27041340
  35. 35. Wissuwa M, Ismail AM, Graham RD. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant and Soil. 2008;306:37-48. https://doi.org/10.1007/s11104-007-9368-4
  36. 36. Fageria N, Baligar V, Clark R. Micronutrients in crop production. Advances in Agronomy. 2002;77:185-268. https://doi.org/10.1016/S0065-2113(02)77015-6
  37. 37. Singh P, Dhaliwal SS, Sadana US, Manchanda JS. Enrichment of rice cultivars with Fe at different plant growth stages through ferti-fortification. Indian Journals. 2013;2:140-8. https://doi.org/10.5958/j.2319-1198.2.2.018
  38. 38. Zhang J, Wu L, Wang M. Iron and zinc biofortification in polished rice and accumulation in rice plant (Oryza sativa L.) as affected by nitrogen fertilization. Acta Agriculturae Scandinavica Section B–Soil and Plant Science. 2008;58(3):267-72. https://doi.org/10.1080/09064710701628982
  39. 39. Wang Q, Yu Y, Li J, Wan Y, Huang Q, Guo Y, et al. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat–summer maize rotation system. Journal of Agricultural and Food Chemistry. 2017;65(6):1116-23. https://doi.org/10.1021/acs.jafc.6b05149
  40. 40. Newman R, Waterland N, Moon Y, Tou JC. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention–a review. Plant Foods for Human Nutrition. 2019;74:449-60. https://doi.org/10.1007/s11130-019-00769-z
  41. 41. Qin Y, Melse-Boonstra A, Yuan B, Pan X, Dai Y, Zhou M, et al. Zinc biofortification of rice in China: a simulation of zinc intake with different dietary patterns. Nutrients. 2012;4(6):517-28. https://doi.org/10.3390/nu4060517
  42. 42. Kanwal S, Rahmatullah AR, Ahmad R. Zinc partitioning in maize grain after soil fertilization with zinc sulfate. International Journal of Agriculture & Biology. 2010;12(2):299-302.
  43. 43. Bouis HE, Welch RM. Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science. 2010;50:S-20-S-32. https://doi.org/10.2135/cropsci2009.09.0531
  44. 44. Li B, Zhou D, Cang L, Zhang H, Fan X, Qin S. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research. 2007;96(1-2):166-73. https://doi.org/10.1016/j.still.2007.05.005
  45. 45. Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci S, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition. 1997;20(4-5):461-71. https://doi.org/10.1080/01904169709365267
  46. 46. Yang X, Tian X, Gale W, Cao Y, Lu X, Zhao A. Effect of soil and foliar zinc application on zinc concentration and bioavailability in wheat grain grown on potentially zinc-deficient soil. Cereal Research Communications. 2011;39:535-43. https://doi.org/10.1556/CRC.39.2011.4.8
  47. 47. Eiche E, Nothstein AK, Göttlicher J, Steininger R, Dhillon KS, Neumann T. The behaviour of irrigation induced Se in the groundwater-soil-plant system in Punjab, India. Environmental Science: Processes & Impacts. 2019;21(6):957-69. https://doi.org/10.1039/C9EM00009G
  48. 48. White PJ, Broadley MR. Biofortifying crops with essential mineral elements. Trends in Plant Science. 2005;10(12):586-93. https://doi.org/10.1016/j.tplants.2005.10.001
  49. 49. Shafea L, Saffari M. Effects of zinc (ZnSO4) and nitrogen on chemical composition of maize grain. International Journal of AgriScience. 2011;1(6):323-8.
  50. 50. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römheld V, et al. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science. 2010;51(1):165-70. https://doi.org/10.1016/j.jcs.2009.11.008
  51. 51. Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science. 2009;14(8):436-42. https://doi.org/10.1016/j.tplants.2009.06.006
  52. 52. Pooniya V, Shivay YS. Effect of green manuring and zinc fertilization on productivity and nutrient uptake in basmati rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian Journal of Agronomy. 2011;56(1):28-34. https://doi.org/10.59797/ija.v56i1.4665
  53. 53. Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients. 2015;7(6):4199-239. https://doi.org/10.3390/nu7064199
  54. 54. Kutman UB, Yildiz B, Ozturk L, Cakmak I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry. 2010;87(1):1-9. https://doi.org/10.1094/CCHEM-87-1-0001
  55. 55. Chilimba AD, Young SD, Joy EJ. Agronomic biofortification of maize, soybean and groundnut with selenium in intercropping and sole cropping systems. African Journal of Agricultural Research. 2014;9(50):3620-6. https://doi.org/10.5897/AJAR2014.8978
  56. 56. Hidrobo M, Hoddinott J, Peterman A, Margolies A, Moreira V. Cash, food, or vouchers? Evidence from a randomized experiment in northern Ecuador. Journal of Development Economics. 2014;107:144-56. https://doi.org/10.1016/j.jdeveco.2013.11.009
  57. 57. Mishra J, Hariprasanna K, Rao S, Patil J. Biofortification of post-rainy sorghum (Sorghum bicolor) with zinc and iron through fertilization strategy. The Indian Journal of Agricultural Sciences. 2015;85(5):721-4. https://doi.org/10.56093/ijas.v85i5.48515
  58. 58. Fan S, Zhang X. Public expenditure, growth and poverty reduction in rural Uganda. African Development Review. 2008;20(3):466-96. https://doi.org/10.1111/j.1467-8268.2008.00194.x
  59. 59. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013;31(7):397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  60. 60. Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition. 2018;5:301899. https://doi.org/10.3389/fnut.2018.00012
  61. 61. Jalal A, Shah S, Filho MCMT, Khan A, Shah T, Ilyas M, Rosa PAL. Agro-biofortification of zinc and iron in wheat grains. Gesunde Pflanzen 2020;72(3):227-36. https://doi.org/10.1016/j.jdeveco.2013.11.009
  62. 62. Combs GF. Selenium in global food systems. British Journal of Nutrition. 2001;85(5):517-47. https://doi.org/10.1079/bjn2000280
  63. 63. Chhagan BR, Sharma MP, Sharma KR, Samanta A, Wani OA, Kachroo D, et al. Impact of organic, inorganic and biofertilizers on crop yield and N, P and K uptake under rainfed maize-wheat cropping system. International Journal of Current Microbiology and Applied Sciences. 2019;8(4):2546-64. https://doi.org/10.20546/ijcmas.2019.804.297

Downloads

Download data is not yet available.