Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Exploring the factors influencing the adoption of smart farming technologies in agriculture - A bibliometric analysis literature review

DOI
https://doi.org/10.14719/pst.8325
Submitted
17 March 2025
Published
17-06-2025 — Updated on 01-07-2025
Versions

Abstract

Smart Farming Technologies (SFTs) play a crucial role in enhancing agricultural productivity, sustainability and resource efficiency. However, a variety of technological, economic, social and policy-related issues influence their adoption. This study uses bibliometric analysis to highlight collaborative efforts in this field, uncover global research trends and investigate the major factors impacting the adoption of SFT. The study uses Visualization of Similarities (VOS) viewer and R studio to perform bibliographic coupling, keyword co-occurrence and citation network analysis using Scopus as the main database. The selection of excellent, peer-reviewed studies is guaranteed via a PRISMA-based methodology. The results show notable differences in adoption rates, with affluent countries making tremendous progress while underdeveloped regions struggle with digital literacy, inadequate infrastructure and budgetary restraints. High upfront expenditures, problems with interoperability, worries about data privacy and farmers' aversion to change are some of the main obstacles. Adoption rates are greatly impacted by social factors, institutional support and governmental regulations, underscoring the necessity of focused interventions. To close the gap between the development of technology and its practical application, the study emphasizes the value of collaborative research, interdisciplinary approaches and policy frameworks. To increase adoption, it is essential to address infrastructure and financial issues, improve farmer training and fortify policy measures. The findings deepen our understanding of the dynamics of smart farming adoption and provide evidence-based suggestions for industry executives, researchers and policymakers. To guarantee extensive SFT implementation and long-term agricultural resilience, future studies should concentrate on localized adoption models, sustainable financing and adaptable regulations.

References

  1. 1. Balkrishna A, Sharma G, Sharma N, Kumar P, Mittal R, Parveen R. Global perspective of agriculture systems: from ancient times to the modern era. In: Balkrishna A, editors. Sustainable agriculture for food security. 2021. pp. 3-45. Apple Academic Press. https://doi.org/10.1201/9781003242543-2
  2. 2. United Nations. Global issues: Population. https://www.un.org/en/global-issues/population
  3. 3. Fróna D, Szenderák J, Harangi-Rákos M. The challenge of feeding the world. Sustain. 2019;11(20):5816. https://doi.org/10.3390/su11205816
  4. 4. Bastos Lima MG. Toward multipurpose agriculture: food, fuels, flex crops and prospects for a bioeconomy. Global Environ Politics. 2018;18(2):143-50. https://doi.org/10.1162/glep_a_00452
  5. 5. Dury S, Bendjebbar P, Hainzelin E, Giordano T, Bricas N. Food systems at risk. New trends and challenges (Doctoral dissertation, CIRAD (Montpellier; France); FAO, CIRAD). 2019. hal-03936375
  6. 6. Singh R, Singh GS. Traditional agriculture: a climate-smart approach for sustainable food production. Energy Ecol Environ. 2017;2:296-316. https://doi.org/10.1007/s40974-017-0074-7
  7. 7. Nemade S, Ninama J, Kumar S, Pandarinathan S, Azam K, Singh B, et al. Advancements in agronomic practices for sustainable crop production: A review. Int J Plant Soil Sci. 2023;35(22):679-89.
  8. 8. Maiti R, Kumar R, Mehta A, Kumar D. Fertilizer recommendation system with pest monitoring and irrigation planning. In Proceedings of 2024 3rd International Conference for Advancement in Technology (ICONAT); 2024 Sep 6; p. 1-6): IEEE. https://doi.org/10.1109/ICONAT61936.2024.10775093
  9. 9. Kalaiselvi VK, Gopalakrishnan J, Anand SS, Hariharan S, Saravanan S, Annamalai H. Sustainable algorithms using artificial intelligence and various stages for precision agricultural cultivation. In Proceedings of 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) 2023 Aug 23 p. 239-44): IEEE. https://doi.org/10.1109/ICAISS58487.2023.10250631
  10. 10. Behera K, Babbar A, Vyshnavi RG, Yankanchi S, Verma B, Patel T, Jaiswal S. Intelligent technologies and their transformative role in modern agriculture: A comparative approach. Environ Conserv J. 2024;25(3):870-80. https://doi.org/10.36953/ECJ.26292764
  11. 11. Sekhar M, Rastogi M, Rajesh CM, Saikanth DR, Rout S, Kumar S, et al. Exploring traditional agricultural techniques integrated with modern farming for a sustainable future: A review. J Sci Res Rep. 2024;30(3):185-98. https://doi.org/10.9734/jsrr/2024/v30i31871
  12. 12. Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM. Delineation of soil management zones for variable-rate fertilization: A review. Adv Agron. 2017;143:175-245. https://doi.org/10.1016/bs.agron.2017.01.003
  13. 13. Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things. 2022;18:100187. https://doi.org/10.1016/j.iot.2020.100187
  14. 14. Stombaugh T. Satellite‐based positioning systems for precision agriculture. In: Shannon DK, Clay DE, Kitchen NR, editors. Precision agriculture basics. 2018.pp. 25-35. https://doi.org/10.2134/precisionagbasics.2017.0036
  15. 15. Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agriculture. Comput Electron Agric. 2017;143:23-37. https://doi.org/10.1016/j.compag.2017.09.037
  16. 16. Bronson K, Knezevic I. Big data in food and agriculture. Big Data Soc. 2016;3(1):2053951716648174. https://doi.org/10.1177/2053951716648174
  17. 17. Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Inf. 2019;10(11):349. https://doi.org/10.3390/info10110349
  18. 18. Hajjaj SS, Sahari KS. Review of agriculture robotics: Practicality and feasibility. In Proceedings of 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) 2016 Dec 17: p. 194-98: IEEE. https://doi.org/10.1109/IRIS.2016.8066090
  19. 19. Marinoudi V, Sørensen CG, Pearson S, Bochtis D. Robotics and labour in agriculture. A context consideration. Biosyst Eng. 2019;184:111-21. https://doi.org/10.1016/j.biosystemseng.2019.06.013
  20. 20. ElBeheiry N, Balog RS. Technologies driving the shift to smart farming: A review. IEEE Sensors Journal. 2022;23(3):1752-69. https://doi.org/10.1109/JSEN.2022.3225183
  21. 21. Debangshi U, Sadhukhan A, Dutta D, Roy S. Application of smart farming technologies in sustainable agriculture development: A comprehensive review on present status and future advancements. Int J Environ Climate Change. 2023;13(11):3689-704. https://doi.org/10.9734/ijecc/2023/v13i113549
  22. 22. Hashir M, Mishra S, Arora Y, Sharma AK. Empowering ecosystems-Unveiling the interplay of smart agriculture and sustainable practices. Int J Innov Res Comput Sci Technol. 2024;12(5):8-13. https://doi.org/10.55524/ijircst.2024.12.5.2
  23. 23. Giua C, Materia VC, Camanzi L. Smart farming technologies adoption: Which factors play a role in the digital transition?. Technol Soc. 2022;68:101869. https://doi.org/10.1016/j.techsoc.2022.101869
  24. 24. Osrof HY, Tan CL, Angappa G, Yeo SF, Tan KH. Adoption of smart farming technologies in field operations: A systematic review and future research agenda. Technol Soc. 2023;75:102400. https://doi.org/10.1016/j.techsoc.2023.102400
  25. 25. Prabha C, Pathak A. Enabling technologies in smart agriculture: A way forward towards future fields. In Proceedings of 2023 International conference on advancement in computation & computer technologies (In CACCT) 2023 May 5: p. 821-26: IEEE. https://doi.org/10.1109/InCACCT57535.2023.10141722
  26. 26. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020;9(9):6305-24. https://doi.org/10.1109/JIOT.2020.2998584
  27. 27. Say SM, Keskin M, Sehri M, Sekerli YE. Adoption of precision agriculture technologies in developed and developing countries. Online J Sci Technol. January. 2018;8(1):7-15.
  28. 28. Alazzai WK, Obaid MK, Abood BS, Jasim L. Smart agriculture solutions: Harnessing AI and IoT for crop management. In Proceedings of E3S Web of Conferences 2024:Vol. 477. p. 00057:. EDP Sciences. https://doi.org/10.1051/e3sconf/202447700057
  29. 29. Hussein AH, Jabbar KA, Mohammed A, Al-Jawahry HM. AI and IoT in farming: A sustainable approach. In Proceedings of E3S Web of Conferences 2024: Vol. 491: p. 01020: EDP Sciences. https://doi.org/10.1051/e3sconf/202449101020
  30. 30. Qazi S, Khawaja BA, Farooq QU. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. Ieee Access. 2022;10:21219-35. https://doi.org/10.1109/ACCESS.2022.3152544
  31. 31. Papadopoulos G, Arduini S, Uyar H, Psiroukis V, Kasimati A, Fountas S. Economic and environmental benefits of digital agricultural technologies in crop production: A review. Smart Agric Technol. 2024:100441. https://doi.org/10.1016/j.atech.2024.100441
  32. 32. Assimakopoulos F, Vassilakis C, Margaris D, Kotis K, Spiliotopoulos D. The implementation of “smart” technologies in the agricultural sector: a review. Info. 2024;15(8):466. https://doi.org/10.3390/info15080466
  33. 33. Zamir MA, Sonar RM. Application of Internet of Things (IoT) in agriculture: a review. In Proceedings of 2023 8th International Conference on Communication and Electronics Systems (ICCES) 2023 Jun 1 p. 425-31: IEEE. https://doi.org/10.1109/ICCES57224.2023.10192761
  34. 34. Rohila AK, Mukteshawar R, Arulmanikandan B, Kumar R. Constraints perceived by farmers in fish farming: A review analysis. Int J Environ Clim Change. 2023;13(11):1546-50.
  35. 35. Jones-Garcia E, Krishna VV. Farmer adoption of sustainable intensification technologies in the maize systems of the Global South. A review. Agron Sustain Dev. 2021;41(1):8. https://doi.org/10.1007/s13593-020-00658-9
  36. 36. Pranckutė R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications. 2021;9(1):12. https://doi.org/10.3390/publications9010012
  37. 37. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
  38. 38. Vecchio Y, De Rosa M, Pauselli G, Masi M, Adinolfi F. The leading role of perception: the FACOPA model to comprehend innovation adoption. Agric Food Econ. 2022;10(1):5. https://doi.org/10.1186/s40100-022-00211-0
  39. 39. Nguyen LL, Khuu DT, Halibas A, Nguyen TQ. Factors that influence the intention of smallholder rice farmers to adopt cleaner production practices: An empirical study of precision agriculture adoption. Eval Rev. 2024;48(4):692-735. https://doi.org/10.1177/0193841X231200775
  40. 40. Shi Y, Siddik AB, Masukujjaman M, Zheng G, Hamayun M, Ibrahim AM. The antecedents of willingness to adopt and pay for the IoT in the agricultural industry: an application of the UTAUT 2 theory. Sustain. 2022;14(11):6640. https://doi.org/10.3390/su14116640
  41. 41. Wichean A, Sungsanit M. Factors influencing the intentions to adopt technology of the broiler farmer in Livestock Region 3, Thailand. Trends Sci. 2022;19(1):1707. https://doi.org/10.48048/tis.2022.1707
  42. 42. Kusnandar K, Harisudin M, Riptanti EW, Khomah I, Setyowati N, Qonita RA. Prioritizing IoT adoption strategies in millennial farming: An analytical network process approach. Open Agric. 2023;8(1):20220179. https://doi.org/10.1515/opag-2022-0179
  43. 43. Harisudin M, Riptanti EW, Setyowati N, Khomah I. Determinants of the Internet of Things adoption by millennial farmers. AIMS Agric Food. 2023;8(2). https://doi.org/10.3934/agrfood.2023018
  44. 44. Marmont B, Eastwood C, Minnee E, Dorner Z, Neal M, Silva-Villacorta D. Predicting future adoption of early-stage innovations for smart farming: A case study investigating critical factors influencing use of smart feeder technology for potential delivery of methane inhibitors in pasture-grazed dairy systems. Smart Agric Technol. 2024;9:100549. https://doi.org/10.1016/j.atech.2024.100549
  45. 45. Narwane VS, Gunasekaran A, Gardas BB. Unlocking adoption challenges of IoT in Indian agricultural and food supply chain. Smart Agric Technol. 2022;2:100035. https://doi.org/10.1016/j.atech.2022.100035
  46. 46. Varela-Aldás J, Gavilanes A, Velasco N, Del-Valle-Soto C, Bran C. Acceptance of an IoT system for strawberry cultivation: A case study of different users. sustainability. 2024;16(16):7221. https://doi.org/10.3390/su16167221
  47. 47. Hundal GS, Laux CM, Buckmaster D, Sutton MJ, Langemeier M. Exploring barriers to the adoption of internet of things-based precision agriculture practices. Agric. 2023;13(1):163. https://doi.org/10.3390/agriculture13010163
  48. 48. Michels M, Fecke W, Feil JH, Musshoff O, Lülfs‐Baden F, Krone S. “Anytime, anyplace, anywhere”—A sample selection model of mobile internet adoption in German agriculture. Agribus. 2020;36(2):192-207. https://doi.org/10.1002/agr.21635
  49. 49. Das V J, Sharma S, Kaushik A. Views of Irish farmers on smart farming technologies: An observational study. AgriEng. 2019;1(2):164-87. https://doi.org/10.3390/agriengineering1020013
  50. 50. Opasvitayarux P, Setamanit SO, Assarut N, Visamitanan K. Antecedents of IoT adoption in food supply chain quality management: an integrative model. J Int Logist Trade. 2022;20(3):135-70. https://doi.org/10.1108/JILT-05-2022-0002
  51. 51. Adereti DT, Gardezi M, Wang T, McMaine J. Understanding farmers’ engagement and barriers to machine learning‐based intelligent agricultural decision support systems. Agron J. 2024 May;116(3):1237-49. https://doi.org/10.1002/agj2.21358
  52. 52. Troiano S, Carzedda M, Marangon F. Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy. Agric Food Econ. 2023;11(1):16. https://doi.org/10.1186/s40100-023-00247-w
  53. 53. Boyer CN, Cavasos KE, Greig JA, Schexnayder SM. Influence of risk and trust on beef producers’ use of precision livestock farming. Comput Electron Agric. 2024;218:108641. https://doi.org/10.1016/j.compag.2024.108641
  54. 54. Silvi R, Pereira LG, Paiva CA, Tomich TR, Teixeira VA, Sacramento JP, et al. Adoption of precision technologies by Brazilian dairy farms: The farmer’s perception. Animals. 2021;11(12):3488. https://doi.org/10.3390/ani11123488
  55. 55. Michels M, von Hobe CF, Weller von Ahlefeld PJ, Musshoff O. The adoption of drones in German agriculture: a structural equation model. Precis Agricu. 2021;22(6):1728-48. https://doi.org/10.1007/s11119-021-09809-8
  56. 56. Kitole FA, Mkuna E, Sesabo JK. Digitalization and agricultural transformation in developing countries: Empirical evidence from Tanzania agriculture sector. Smart Agric Technol. 2024;7:100379. https://doi.org/10.1016/j.atech.2023.100379
  57. 57. Puppala H, Peddinti PR, Tamvada JP, Ahuja J, Kim B. Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India. Technol Soc. 2023;74:102335. https://doi.org/10.1016/j.techsoc.2023.102335
  58. 58. Li L, Min X, Guo J, Wu F. The influence mechanism analysis on the farmers’ intention to adopt Internet of Things based on UTAUT-TOE model. Sci Rep. 2024;14(1):15016. https://doi.org/10.1038/s41598-024-65415-4
  59. 59. Jabbari A, Humayed A, Reegu FA, Uddin M, Gulzar Y, Majid M. Smart farming revolution: Farmer’s perception and adoption of smart iot technologies for crop health monitoring and yield prediction in jizan, Saudi Arabia. Sustain. 2023;15(19):14541. https://doi.org/10.3390/su151914541
  60. 60. Parmaksiz O, Cinar G. Technology acceptance among farmers: Examples of agricultural unmanned aerial vehicles. Agron. 2023;13(8):2077. https://doi.org/10.3390/agronomy13082077
  61. 61. Masi M, De Rosa M, Vecchio Y, Bartoli L, Adinolfi F. The long way to innovation adoption: insights from precision agriculture. Agric Food Econ. 2022;10(1):27. https://doi.org/10.1186/s40100-022-00236-5
  62. 62. Zaman NB, Raof WN, Saili AR, Aziz NN, Fatah FA, Vaiappuri SK. Adoption of smart farming technology among rice farmers. J Adv Res Appl Sci Eng Technol. 2023;29(2):268-75. https://doi.org/10.37934/araset.29.2.268275
  63. 63. Brugler S, Gardezi M, Dadkhah A, Rizzo DM, Zia A, Clay SA. Improving decision support systems with machine learning: Identifying barriers to adoption. Agron J. 2024;116(3):1229-36. https://doi.org/10.1002/agj2.21432
  64. 64. Nazro M H, Saili A R, Mohammad Azam N H. The role of trust in adoption of internet of things among farmers in Selangor, Malaysia. Food Res. 2023;7(S2):134-39. https://doi.org/10.26656/fr.2017.7(S2).18
  65. 65. Lieder S, Schröter-Schlaack C. Smart farming technologies in arable farming: Towards a holistic assessment of opportunities and risks. Sustain. 2021;13(12):6783. https://doi.org/10.3390/su13126783
  66. 66. Czibere I, Kovách I, Loncsák N. Hungarian farmers and the adoption of precision farming. Eur Countrys. 2023;15(3):366-80. https://doi.org/10.2478/euco-2023-0020
  67. 67. Lee CL, Strong R, Briers G, Murphrey T, Rajan N, Rampold S. A correlational study of two US state Extension professionals’ behavioral intentions to improve sustainable food chains through precision farming practices. Foods. 2023;12(11):2208. https://doi.org/10.3390/foods12112208
  68. 68. Battheu-Noirfalise C, Froidmont E, Mathot M, Stilmant D. Decision support tools for grass-based fodder management on Walloon dairy farms: current adoption and perspectives. Biotechnol. Agron Soc Environ. 2022;26:261-74. https://doi.org/10.25518/1780-4507.19928
  69. 69. Caffaro F, Cavallo E. The effects of individual variables, farming system characteristics and perceived barriers on actual use of smart farming technologies: Evidence from the Piedmont region, northwestern Italy. Agric. 2019;9(5):111. https://doi.org/10.3390/agriculture9050111
  70. 70. Balogh P, Bujdos Á, Czibere I, Fodor L, Gabnai Z, Kovách I, et al. Main motivational factors of farmers adopting precision farming in Hungary. Agron. 2020 ;10(4):610. https://doi.org/10.3390/agronomy10040610
  71. 71. Marescotti ME, Demartini E, Filippini R, Gaviglio A. Smart farming in mountain areas: Investigating livestock farmers’ technophobia and technophilia and their perception of innovation. J Rural Stud. 2021;86:463-72. https://doi.org/10.1016/j.jrurstud.2021.07.015
  72. 72. Guldal H, Özcelik A. From conventional to smart: Farmers’ preferences under alternative policy scenarios. New Medit. 2024;2024(1):1-15. https://doi.org/10.30682/nm2401a
  73. 73. Yaghoubi M, Niknami M. Challenges of precision agriculture application in pistachio orchards: factor analysis from Iranian agricultural experts' perspective. Tekirdağ Ziraat Fakültesi Dergisi. 2022;19(3):473-82. https://doi.org/10.33462/jotaf.972740
  74. 74. Clark B, Jones G, Kendall H, Taylor J, Cao Y, Li W, et al. A proposed framework for accelerating technology trajectories in agriculture: A case study in China. Front Agric Sci Eng. 2018. https://doi.org/10.15302/J-FASE-2018244
  75. 75. Shepherd M, Turner JA, Small B, Wheeler D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’revolution. J Sci Food Agric. 2020;100(14):5083-92. https://doi.org/10.1002/jsfa.9346
  76. 76. Pivoto D, Barham B, Waquil PD, Foguesatto CR, Dalla Corte VF, Zhang D, et al. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int Food Agribus Manag Rev. 2019;22(4):571-88. https://doi.org/10.22434/IFAMR2018.0086
  77. 77. Schukat S, Heise H. Towards an understanding of the behavioral intentions and actual use of smart products among German farmers. Sustain. 2021;13(12):6666. https://doi.org/10.3390/su13126666
  78. 78. Canavari M, Medici M, Wongprawmas R, Xhakollari V, Russo S. A path model of the intention to adopt variable rate irrigation in Northeast Italy. Sustain. 2021;13(4):1879. https://doi.org/10.3390/su13041879
  79. 79. Salimi M, Pourdarbani R, Nouri BA. Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). Acta Technol Agric. 2020;23(1):30-9. https://doi.org/10.2478/ata-2020-0006

Downloads

Download data is not yet available.