Review Articles
Vol. 12 No. 3 (2025)
Exploring the factors influencing the adoption of smart farming technologies in agriculture - A bibliometric analysis literature review
Department of Agricultural Extension and Rural Sociology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Training Division, Directorate of Extension Education, Tamil Nadu Agricultural University, Coimbatore 641 003. Tamil Nadu, India
Department of Agricultural Extension and Rural Sociology, Tamil Nadu Agricultural University, Coimbatore 641 003. Tamil Nadu, India
Department of Agricultural Entomology, ICAR - Krishi Vigyan Kendra, Tiruppur 641 667, Tamil Nadu, India
School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Smart Farming Technologies (SFTs) play a crucial role in enhancing agricultural productivity, sustainability and resource efficiency. However, a variety of technological, economic, social and policy-related issues influence their adoption. This study uses bibliometric analysis to highlight collaborative efforts in this field, uncover global research trends and investigate the major factors impacting the adoption of SFT. The study uses Visualization of Similarities (VOS) viewer and R studio to perform bibliographic coupling, keyword co-occurrence and citation network analysis using Scopus as the main database. The selection of excellent, peer-reviewed studies is guaranteed via a PRISMA-based methodology. The results show notable differences in adoption rates, with affluent countries making tremendous progress while underdeveloped regions struggle with digital literacy, inadequate infrastructure and budgetary restraints. High upfront expenditures, problems with interoperability, worries about data privacy and farmers' aversion to change are some of the main obstacles. Adoption rates are greatly impacted by social factors, institutional support and governmental regulations, underscoring the necessity of focused interventions. To close the gap between the development of technology and its practical application, the study emphasizes the value of collaborative research, interdisciplinary approaches and policy frameworks. To increase adoption, it is essential to address infrastructure and financial issues, improve farmer training and fortify policy measures. The findings deepen our understanding of the dynamics of smart farming adoption and provide evidence-based suggestions for industry executives, researchers and policymakers. To guarantee extensive SFT implementation and long-term agricultural resilience, future studies should concentrate on localized adoption models, sustainable financing and adaptable regulations.
References
- 1. Balkrishna A, Sharma G, Sharma N, Kumar P, Mittal R, Parveen R. Global perspective of agriculture systems: from ancient times to the modern era. In: Balkrishna A, editors. Sustainable agriculture for food security. 2021. pp. 3-45. Apple Academic Press. https://doi.org/10.1201/9781003242543-2
- 2. United Nations. Global issues: Population. https://www.un.org/en/global-issues/population
- 3. Fróna D, Szenderák J, Harangi-Rákos M. The challenge of feeding the world. Sustain. 2019;11(20):5816. https://doi.org/10.3390/su11205816
- 4. Bastos Lima MG. Toward multipurpose agriculture: food, fuels, flex crops and prospects for a bioeconomy. Global Environ Politics. 2018;18(2):143-50. https://doi.org/10.1162/glep_a_00452
- 5. Dury S, Bendjebbar P, Hainzelin E, Giordano T, Bricas N. Food systems at risk. New trends and challenges (Doctoral dissertation, CIRAD (Montpellier; France); FAO, CIRAD). 2019. hal-03936375
- 6. Singh R, Singh GS. Traditional agriculture: a climate-smart approach for sustainable food production. Energy Ecol Environ. 2017;2:296-316. https://doi.org/10.1007/s40974-017-0074-7
- 7. Nemade S, Ninama J, Kumar S, Pandarinathan S, Azam K, Singh B, et al. Advancements in agronomic practices for sustainable crop production: A review. Int J Plant Soil Sci. 2023;35(22):679-89.
- 8. Maiti R, Kumar R, Mehta A, Kumar D. Fertilizer recommendation system with pest monitoring and irrigation planning. In Proceedings of 2024 3rd International Conference for Advancement in Technology (ICONAT); 2024 Sep 6; p. 1-6): IEEE. https://doi.org/10.1109/ICONAT61936.2024.10775093
- 9. Kalaiselvi VK, Gopalakrishnan J, Anand SS, Hariharan S, Saravanan S, Annamalai H. Sustainable algorithms using artificial intelligence and various stages for precision agricultural cultivation. In Proceedings of 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) 2023 Aug 23 p. 239-44): IEEE. https://doi.org/10.1109/ICAISS58487.2023.10250631
- 10. Behera K, Babbar A, Vyshnavi RG, Yankanchi S, Verma B, Patel T, Jaiswal S. Intelligent technologies and their transformative role in modern agriculture: A comparative approach. Environ Conserv J. 2024;25(3):870-80. https://doi.org/10.36953/ECJ.26292764
- 11. Sekhar M, Rastogi M, Rajesh CM, Saikanth DR, Rout S, Kumar S, et al. Exploring traditional agricultural techniques integrated with modern farming for a sustainable future: A review. J Sci Res Rep. 2024;30(3):185-98. https://doi.org/10.9734/jsrr/2024/v30i31871
- 12. Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM. Delineation of soil management zones for variable-rate fertilization: A review. Adv Agron. 2017;143:175-245. https://doi.org/10.1016/bs.agron.2017.01.003
- 13. Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things. 2022;18:100187. https://doi.org/10.1016/j.iot.2020.100187
- 14. Stombaugh T. Satellite‐based positioning systems for precision agriculture. In: Shannon DK, Clay DE, Kitchen NR, editors. Precision agriculture basics. 2018.pp. 25-35. https://doi.org/10.2134/precisionagbasics.2017.0036
- 15. Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agriculture. Comput Electron Agric. 2017;143:23-37. https://doi.org/10.1016/j.compag.2017.09.037
- 16. Bronson K, Knezevic I. Big data in food and agriculture. Big Data Soc. 2016;3(1):2053951716648174. https://doi.org/10.1177/2053951716648174
- 17. Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Inf. 2019;10(11):349. https://doi.org/10.3390/info10110349
- 18. Hajjaj SS, Sahari KS. Review of agriculture robotics: Practicality and feasibility. In Proceedings of 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) 2016 Dec 17: p. 194-98: IEEE. https://doi.org/10.1109/IRIS.2016.8066090
- 19. Marinoudi V, Sørensen CG, Pearson S, Bochtis D. Robotics and labour in agriculture. A context consideration. Biosyst Eng. 2019;184:111-21. https://doi.org/10.1016/j.biosystemseng.2019.06.013
- 20. ElBeheiry N, Balog RS. Technologies driving the shift to smart farming: A review. IEEE Sensors Journal. 2022;23(3):1752-69. https://doi.org/10.1109/JSEN.2022.3225183
- 21. Debangshi U, Sadhukhan A, Dutta D, Roy S. Application of smart farming technologies in sustainable agriculture development: A comprehensive review on present status and future advancements. Int J Environ Climate Change. 2023;13(11):3689-704. https://doi.org/10.9734/ijecc/2023/v13i113549
- 22. Hashir M, Mishra S, Arora Y, Sharma AK. Empowering ecosystems-Unveiling the interplay of smart agriculture and sustainable practices. Int J Innov Res Comput Sci Technol. 2024;12(5):8-13. https://doi.org/10.55524/ijircst.2024.12.5.2
- 23. Giua C, Materia VC, Camanzi L. Smart farming technologies adoption: Which factors play a role in the digital transition?. Technol Soc. 2022;68:101869. https://doi.org/10.1016/j.techsoc.2022.101869
- 24. Osrof HY, Tan CL, Angappa G, Yeo SF, Tan KH. Adoption of smart farming technologies in field operations: A systematic review and future research agenda. Technol Soc. 2023;75:102400. https://doi.org/10.1016/j.techsoc.2023.102400
- 25. Prabha C, Pathak A. Enabling technologies in smart agriculture: A way forward towards future fields. In Proceedings of 2023 International conference on advancement in computation & computer technologies (In CACCT) 2023 May 5: p. 821-26: IEEE. https://doi.org/10.1109/InCACCT57535.2023.10141722
- 26. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020;9(9):6305-24. https://doi.org/10.1109/JIOT.2020.2998584
- 27. Say SM, Keskin M, Sehri M, Sekerli YE. Adoption of precision agriculture technologies in developed and developing countries. Online J Sci Technol. January. 2018;8(1):7-15.
- 28. Alazzai WK, Obaid MK, Abood BS, Jasim L. Smart agriculture solutions: Harnessing AI and IoT for crop management. In Proceedings of E3S Web of Conferences 2024:Vol. 477. p. 00057:. EDP Sciences. https://doi.org/10.1051/e3sconf/202447700057
- 29. Hussein AH, Jabbar KA, Mohammed A, Al-Jawahry HM. AI and IoT in farming: A sustainable approach. In Proceedings of E3S Web of Conferences 2024: Vol. 491: p. 01020: EDP Sciences. https://doi.org/10.1051/e3sconf/202449101020
- 30. Qazi S, Khawaja BA, Farooq QU. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. Ieee Access. 2022;10:21219-35. https://doi.org/10.1109/ACCESS.2022.3152544
- 31. Papadopoulos G, Arduini S, Uyar H, Psiroukis V, Kasimati A, Fountas S. Economic and environmental benefits of digital agricultural technologies in crop production: A review. Smart Agric Technol. 2024:100441. https://doi.org/10.1016/j.atech.2024.100441
- 32. Assimakopoulos F, Vassilakis C, Margaris D, Kotis K, Spiliotopoulos D. The implementation of “smart” technologies in the agricultural sector: a review. Info. 2024;15(8):466. https://doi.org/10.3390/info15080466
- 33. Zamir MA, Sonar RM. Application of Internet of Things (IoT) in agriculture: a review. In Proceedings of 2023 8th International Conference on Communication and Electronics Systems (ICCES) 2023 Jun 1 p. 425-31: IEEE. https://doi.org/10.1109/ICCES57224.2023.10192761
- 34. Rohila AK, Mukteshawar R, Arulmanikandan B, Kumar R. Constraints perceived by farmers in fish farming: A review analysis. Int J Environ Clim Change. 2023;13(11):1546-50.
- 35. Jones-Garcia E, Krishna VV. Farmer adoption of sustainable intensification technologies in the maize systems of the Global South. A review. Agron Sustain Dev. 2021;41(1):8. https://doi.org/10.1007/s13593-020-00658-9
- 36. Pranckutė R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications. 2021;9(1):12. https://doi.org/10.3390/publications9010012
- 37. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
- 38. Vecchio Y, De Rosa M, Pauselli G, Masi M, Adinolfi F. The leading role of perception: the FACOPA model to comprehend innovation adoption. Agric Food Econ. 2022;10(1):5. https://doi.org/10.1186/s40100-022-00211-0
- 39. Nguyen LL, Khuu DT, Halibas A, Nguyen TQ. Factors that influence the intention of smallholder rice farmers to adopt cleaner production practices: An empirical study of precision agriculture adoption. Eval Rev. 2024;48(4):692-735. https://doi.org/10.1177/0193841X231200775
- 40. Shi Y, Siddik AB, Masukujjaman M, Zheng G, Hamayun M, Ibrahim AM. The antecedents of willingness to adopt and pay for the IoT in the agricultural industry: an application of the UTAUT 2 theory. Sustain. 2022;14(11):6640. https://doi.org/10.3390/su14116640
- 41. Wichean A, Sungsanit M. Factors influencing the intentions to adopt technology of the broiler farmer in Livestock Region 3, Thailand. Trends Sci. 2022;19(1):1707. https://doi.org/10.48048/tis.2022.1707
- 42. Kusnandar K, Harisudin M, Riptanti EW, Khomah I, Setyowati N, Qonita RA. Prioritizing IoT adoption strategies in millennial farming: An analytical network process approach. Open Agric. 2023;8(1):20220179. https://doi.org/10.1515/opag-2022-0179
- 43. Harisudin M, Riptanti EW, Setyowati N, Khomah I. Determinants of the Internet of Things adoption by millennial farmers. AIMS Agric Food. 2023;8(2). https://doi.org/10.3934/agrfood.2023018
- 44. Marmont B, Eastwood C, Minnee E, Dorner Z, Neal M, Silva-Villacorta D. Predicting future adoption of early-stage innovations for smart farming: A case study investigating critical factors influencing use of smart feeder technology for potential delivery of methane inhibitors in pasture-grazed dairy systems. Smart Agric Technol. 2024;9:100549. https://doi.org/10.1016/j.atech.2024.100549
- 45. Narwane VS, Gunasekaran A, Gardas BB. Unlocking adoption challenges of IoT in Indian agricultural and food supply chain. Smart Agric Technol. 2022;2:100035. https://doi.org/10.1016/j.atech.2022.100035
- 46. Varela-Aldás J, Gavilanes A, Velasco N, Del-Valle-Soto C, Bran C. Acceptance of an IoT system for strawberry cultivation: A case study of different users. sustainability. 2024;16(16):7221. https://doi.org/10.3390/su16167221
- 47. Hundal GS, Laux CM, Buckmaster D, Sutton MJ, Langemeier M. Exploring barriers to the adoption of internet of things-based precision agriculture practices. Agric. 2023;13(1):163. https://doi.org/10.3390/agriculture13010163
- 48. Michels M, Fecke W, Feil JH, Musshoff O, Lülfs‐Baden F, Krone S. “Anytime, anyplace, anywhere”—A sample selection model of mobile internet adoption in German agriculture. Agribus. 2020;36(2):192-207. https://doi.org/10.1002/agr.21635
- 49. Das V J, Sharma S, Kaushik A. Views of Irish farmers on smart farming technologies: An observational study. AgriEng. 2019;1(2):164-87. https://doi.org/10.3390/agriengineering1020013
- 50. Opasvitayarux P, Setamanit SO, Assarut N, Visamitanan K. Antecedents of IoT adoption in food supply chain quality management: an integrative model. J Int Logist Trade. 2022;20(3):135-70. https://doi.org/10.1108/JILT-05-2022-0002
- 51. Adereti DT, Gardezi M, Wang T, McMaine J. Understanding farmers’ engagement and barriers to machine learning‐based intelligent agricultural decision support systems. Agron J. 2024 May;116(3):1237-49. https://doi.org/10.1002/agj2.21358
- 52. Troiano S, Carzedda M, Marangon F. Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy. Agric Food Econ. 2023;11(1):16. https://doi.org/10.1186/s40100-023-00247-w
- 53. Boyer CN, Cavasos KE, Greig JA, Schexnayder SM. Influence of risk and trust on beef producers’ use of precision livestock farming. Comput Electron Agric. 2024;218:108641. https://doi.org/10.1016/j.compag.2024.108641
- 54. Silvi R, Pereira LG, Paiva CA, Tomich TR, Teixeira VA, Sacramento JP, et al. Adoption of precision technologies by Brazilian dairy farms: The farmer’s perception. Animals. 2021;11(12):3488. https://doi.org/10.3390/ani11123488
- 55. Michels M, von Hobe CF, Weller von Ahlefeld PJ, Musshoff O. The adoption of drones in German agriculture: a structural equation model. Precis Agricu. 2021;22(6):1728-48. https://doi.org/10.1007/s11119-021-09809-8
- 56. Kitole FA, Mkuna E, Sesabo JK. Digitalization and agricultural transformation in developing countries: Empirical evidence from Tanzania agriculture sector. Smart Agric Technol. 2024;7:100379. https://doi.org/10.1016/j.atech.2023.100379
- 57. Puppala H, Peddinti PR, Tamvada JP, Ahuja J, Kim B. Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India. Technol Soc. 2023;74:102335. https://doi.org/10.1016/j.techsoc.2023.102335
- 58. Li L, Min X, Guo J, Wu F. The influence mechanism analysis on the farmers’ intention to adopt Internet of Things based on UTAUT-TOE model. Sci Rep. 2024;14(1):15016. https://doi.org/10.1038/s41598-024-65415-4
- 59. Jabbari A, Humayed A, Reegu FA, Uddin M, Gulzar Y, Majid M. Smart farming revolution: Farmer’s perception and adoption of smart iot technologies for crop health monitoring and yield prediction in jizan, Saudi Arabia. Sustain. 2023;15(19):14541. https://doi.org/10.3390/su151914541
- 60. Parmaksiz O, Cinar G. Technology acceptance among farmers: Examples of agricultural unmanned aerial vehicles. Agron. 2023;13(8):2077. https://doi.org/10.3390/agronomy13082077
- 61. Masi M, De Rosa M, Vecchio Y, Bartoli L, Adinolfi F. The long way to innovation adoption: insights from precision agriculture. Agric Food Econ. 2022;10(1):27. https://doi.org/10.1186/s40100-022-00236-5
- 62. Zaman NB, Raof WN, Saili AR, Aziz NN, Fatah FA, Vaiappuri SK. Adoption of smart farming technology among rice farmers. J Adv Res Appl Sci Eng Technol. 2023;29(2):268-75. https://doi.org/10.37934/araset.29.2.268275
- 63. Brugler S, Gardezi M, Dadkhah A, Rizzo DM, Zia A, Clay SA. Improving decision support systems with machine learning: Identifying barriers to adoption. Agron J. 2024;116(3):1229-36. https://doi.org/10.1002/agj2.21432
- 64. Nazro M H, Saili A R, Mohammad Azam N H. The role of trust in adoption of internet of things among farmers in Selangor, Malaysia. Food Res. 2023;7(S2):134-39. https://doi.org/10.26656/fr.2017.7(S2).18
- 65. Lieder S, Schröter-Schlaack C. Smart farming technologies in arable farming: Towards a holistic assessment of opportunities and risks. Sustain. 2021;13(12):6783. https://doi.org/10.3390/su13126783
- 66. Czibere I, Kovách I, Loncsák N. Hungarian farmers and the adoption of precision farming. Eur Countrys. 2023;15(3):366-80. https://doi.org/10.2478/euco-2023-0020
- 67. Lee CL, Strong R, Briers G, Murphrey T, Rajan N, Rampold S. A correlational study of two US state Extension professionals’ behavioral intentions to improve sustainable food chains through precision farming practices. Foods. 2023;12(11):2208. https://doi.org/10.3390/foods12112208
- 68. Battheu-Noirfalise C, Froidmont E, Mathot M, Stilmant D. Decision support tools for grass-based fodder management on Walloon dairy farms: current adoption and perspectives. Biotechnol. Agron Soc Environ. 2022;26:261-74. https://doi.org/10.25518/1780-4507.19928
- 69. Caffaro F, Cavallo E. The effects of individual variables, farming system characteristics and perceived barriers on actual use of smart farming technologies: Evidence from the Piedmont region, northwestern Italy. Agric. 2019;9(5):111. https://doi.org/10.3390/agriculture9050111
- 70. Balogh P, Bujdos Á, Czibere I, Fodor L, Gabnai Z, Kovách I, et al. Main motivational factors of farmers adopting precision farming in Hungary. Agron. 2020 ;10(4):610. https://doi.org/10.3390/agronomy10040610
- 71. Marescotti ME, Demartini E, Filippini R, Gaviglio A. Smart farming in mountain areas: Investigating livestock farmers’ technophobia and technophilia and their perception of innovation. J Rural Stud. 2021;86:463-72. https://doi.org/10.1016/j.jrurstud.2021.07.015
- 72. Guldal H, Özcelik A. From conventional to smart: Farmers’ preferences under alternative policy scenarios. New Medit. 2024;2024(1):1-15. https://doi.org/10.30682/nm2401a
- 73. Yaghoubi M, Niknami M. Challenges of precision agriculture application in pistachio orchards: factor analysis from Iranian agricultural experts' perspective. Tekirdağ Ziraat Fakültesi Dergisi. 2022;19(3):473-82. https://doi.org/10.33462/jotaf.972740
- 74. Clark B, Jones G, Kendall H, Taylor J, Cao Y, Li W, et al. A proposed framework for accelerating technology trajectories in agriculture: A case study in China. Front Agric Sci Eng. 2018. https://doi.org/10.15302/J-FASE-2018244
- 75. Shepherd M, Turner JA, Small B, Wheeler D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’revolution. J Sci Food Agric. 2020;100(14):5083-92. https://doi.org/10.1002/jsfa.9346
- 76. Pivoto D, Barham B, Waquil PD, Foguesatto CR, Dalla Corte VF, Zhang D, et al. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int Food Agribus Manag Rev. 2019;22(4):571-88. https://doi.org/10.22434/IFAMR2018.0086
- 77. Schukat S, Heise H. Towards an understanding of the behavioral intentions and actual use of smart products among German farmers. Sustain. 2021;13(12):6666. https://doi.org/10.3390/su13126666
- 78. Canavari M, Medici M, Wongprawmas R, Xhakollari V, Russo S. A path model of the intention to adopt variable rate irrigation in Northeast Italy. Sustain. 2021;13(4):1879. https://doi.org/10.3390/su13041879
- 79. Salimi M, Pourdarbani R, Nouri BA. Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). Acta Technol Agric. 2020;23(1):30-9. https://doi.org/10.2478/ata-2020-0006
Downloads
Download data is not yet available.