Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

The potential of nano fertilizers in modern crop nutrition: Advancement, efficiency and challenges in sustainable agriculture

DOI
https://doi.org/10.14719/pst.8495
Submitted
24 March 2025
Published
09-07-2025

Abstract

Nano fertilizer has emerged as a promising innovation in modern agriculture, the traditional methods of crop nutrition. This review explores the significance of crop nutrition in the context of nanotechnology applications in agriculture. It delves into the importance of nano fertilizers, highlighting their distinct advantages over conventional counterparts. The discussion encompasses various sources of nano fertilizers for crop nutrition, elucidating their modes of action and efficiency compared to commercial soil-applied fertilizers. Furthermore, this article provides a comprehensive analysis of the effects of nano fertilizers on the growth and yield components and yield of different agricultural crop plants. Through a comparative study, it evaluates the dosage requirements and agronomic use efficiency of nano fertilizers, shedding light on their potential to enhance crop productivity while minimizing environmental impact. Moreover, the limitations and challenges associated with nano fertilizers are critically examined, offering insights into future research directions and practical implications. By synthesizing existing literature and empirical evidence, this review aims to provide a holistic understanding of nano fertilization in modern agriculture, paving the way for sustainable and efficient crop production practices.

References

  1. 1. Abdel-Aziz HM, Hasaneen MN, Omer AM. Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. Egypt. J. Exp. Biol. 2018 Mar 20;14(1):63-72. https://doi.org/10.5455/egyjebb.20180106032701
  2. 2. Abhilash PC, Singh A, Rakshit A, Tripathi V. Soil amendments and environmental sustainability. In: Ghosh A, editor. Soil amendments for sustainability: challenges and perspectives. Boca Raton (FL): CRC Press; 2018. p. 181–198. https://doi.org/10.1201/9781351027021-9
  3. 3. Asha Kiran K, Jayadeva HM, Vinay M, Pruthviraj N, Kotresh DJ, Karthik AN, et al. Nano nitrogen and phosphorous influence on growth, yield and economics of maize. Int J Adv Biochem Res. 2024;8(8):1363–1367. https://doi.org/10.33545/26174693.2024.v8.i8q.1989
  4. 4. Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, et al. Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials. 2022;12(1):173. https://doi.org/10.3390/nano12010173
  5. 5. Madanayake N, Adassooriya N. Phytotoxicity of nanomaterials in agriculture. Open Biotechnol J. 2021;15(1):109–17.http://dx.doi.org/10.2174/1874070702115010109
  6. 6. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2020;25(1):112. https://doi.org/10.3390/molecules25010112
  7. 7. Reddy BM, Elankavi S, Midde SK, Mattepally VS, Bhumireddy DV. Effects of conventional and nano fertilizers on growth and yield of maize (Zea mays L.). Bhartiya Krishi Anusandhan Patrika. 2022;37(4):379-82.. https://doi.org/10.18805/BKAP500
  8. 8. Channab BE, Idrissi AE, Ammar A, Dardari O, Marrane SE, El Gharrak A, et al. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. Nanoscale. 2024;16(9):4484–513. https://doi.org/10.1039/D3NR05012B
  9. 9. Yadav SK, Lal SK, Yadav S, Laxman J, Verma B, Sushma MK, et al. Use of nanotechnology in agri-food sectors and apprehensions: An overview. Seed Res. 2024;47(2):99–149. https://doi.org/10.56093/sr.v47i2.156378
  10. 10. Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V. Application of nanotechnology in agriculture. In: Dasgupta N, Ranjan S, Lichtfouse E, editors. Environmental Nanotechnology Volume 4. Springer Cham; 2020. p. 317–48.https://doi.org/10.1007/978-3-030-26668-4_9
  11. 11. Verma R, Kesarwani S, Xu J, Davim JP. Polymer Nanocomposites: Fabrication to Applications. CRC Press; 2023. https://doi.org/10.1201/9781003343912
  12. 12. Nongbet A, Mishra A, Mohanta Y, Mahanta S, Ray M, Khan M, et al. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants. 2022;11(19):2587. https://doi.org/10.3390/plants11192587
  13. 13. Singh M, Goswami SP, Ranjitha G, Sachan P, Sahu DK, Beese S, et al. Nanotech for fertilizers and nutrients—Improving nutrient use efficiency with nano-enabled fertilizers. J Exp Agric Int. 2024;46(5):220–47. https://doi.org/10.9734/jeai/2024/v46i52372
  14. 14. Sharma MM, Kapoor D, Kumar R, Sharma P. Nanomaterials and their toxicity to beneficial soil microbiota and fungi associated plants' rhizosphere. In: Husen A, editor. Nanomaterials and Nanocomposites Exposures to Plants. Smart Nanomaterials Technology. Singapore: Springer; 2023. p. 353–80. https://doi.org/10.1007/978-981-99-2419-6_18
  15. 15. Lawrencia D, Wong SK, Low DY, Goh BH, Goh JK, Ruktanonchai UR, et al. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants. 2021;10(2):238. https://doi.org/10.3390/plants10020238
  16. 16. Ghosh R, Otto I, Rommel J. Food security, agricultural productivity, and the environment: Economic, sustainability, and policy perspectives. Front Environ Sci. 2022;10:916272. https://doi.org/10.3389/fenvs.2022.916272
  17. 17. Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J Agric Food Chem. 2012;60(39):9781–92. https://doi.org/10.1021/jf302154y
  18. 18. El-Saadony MT, Almoshadak AS, Shafi ME, Albaqami NM, Saad AM, Eltahan AM, et al. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity—An updated review. Saudi J Biol Sci. 2021;28(12):7349-59. https://doi.org/10.1016/j.sjbs.2021.08.032
  19. 19. Verma S, Hasanain M, Maurya D, Singh P, Kumar V. Role of nano fertilizers for enhancing nutrient use efficiency in field crops. Int J Agric Sci. 2020;12(2):45–50. https://doi.org/10.1234/ijas.v12i2.5678
  20. 20. Khan M, Irfan M, Gupta R. Improving crop nutritional security for sustainable agriculture in the era of climate change. Front Plant Sci. 2023;14:1292264. https://doi.org/10.3389/fpls.2023.1292264
  21. 21. Kumar SH, Dawson J, Kiran PS, Vyas V. Effect of iron and zinc levels on growth and yield of chickpea (Cicer arietinum L.). Int J Curr Microbiol Appl Sci. 2020;9(11):2882–6. https://doi.org/10.20546/ijcmas.2020.911.348
  22. 22. Toksha B, Sonawale V, Vanarase A, Bornare D, Tonde S, Hazra C, et al. Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environ Technol Innov. 2021;24:101986. https://doi.org/10.1016/j.eti.2021.101986
  23. 23. Bajjurla J, Kumar R, Rana N. Revolutionizing crop nutrition: Exploring nano fertilizers in agriculture. Int J Plant Soil Sci. 2024;36(6):327–39.https://doi.org/10.9734/ijpss/2024/v36i64635
  24. 24. Avila-Quezada G, Ingle A, Golinska P. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnol Rev. 2022;11(1):2123-40. https://doi.org/10.1515/ntrev-2022-0126
  25. 25. Choudhary R, Shukla U, Sutaliya R, Raiger PR, Sodani R, Kumar R. Effect of agronomic biofortification of zinc and iron on plant height and seed yield of chickpea (Cicer arietinum L.) varieties. J Exp Agric Int. 2024;46:250-7.https://doi.org/10.9734/jeai/2024/v46i102944
  26. 26. Kohay H, Wielinski J, Reiser J, Perkins LA, Ristroph K, Giraldo JP, et al. Nanocarrier foliar uptake pathways affect delivery of active agents and plant physiological response. Environ Sci Nano. 2025;12:660–74.https://doi.org/10.1039/D4EN00547C
  27. 27. Vijay PP, Kunta S, Madhuri B, Venkatesh. Mobility of nanoparticles in plants. In: Rane AV, Kharissova OV, Kharisov BI, Thomas S, editors. Plant-Based Nanoparticle Synthesis for Sustainable Agriculture. 1st ed. CRC Press; 2025. p. 1–15. Available from: https://doi.org/10.1201/9781003477730-9
  28. 28. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res. 2020;193:118–29. https://doi.org/10.1007/s12011-019-01706-6
  29. 29. Indira M, Krupanidhi S, Vekateswarulu TC, Pallavi G, Peele A. Current aspects of nanotechnology: applications in agriculture. In: Sarma H, Joshi SJ, Prasad R, Jampilek J, editors. Biobased Nanotechnology for Green Applications. Nanotechnology in the Life Sciences. Springer, Cham; 2021. p. 73–99. https://doi.org/10.1007/978-3-030-61985-5_3
  30. 30. Pooja LR, Singh R, Darjee S, Shrivastava M. Changes in approach towards nitrogen management: nanofertilizers for sustainable agriculture. Ann Agric Crop Sci. 2024;9(4):1159. https://doi.org/10.26420/annagriccropsci.2024.1159
  31. 31. Gangwar SK, Singh RP, Mishra P, Ahmad R, Singh A. Effect of foliar application of nano-fertilizers on growth and yield of wheat. Asian J Biol Res. 2022;13(3):190–3. https://doi.org/10.15515/abr.0976-4585.13.3.190193
  32. 32. Kumar Y, Tiwari KN, Singh T, Raliya R. Nanofertilizers and their role in sustainable agriculture. Ann Plant Soil Res. 2021;23(3):238–55. https://doi.org/10.47815/apsr.2021.10067
  33. 33. Mamun MR, Hasan MR, Ahommed MS, Bacchu M, Ali M, Khan MZ. Nanofertilizers toward sustainable agriculture and environment. Environ Technol Innov. 2021;23:101658. https://doi.org/10.1016/j.eti.2021.101658
  34. 34. Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2(2):296–336. https://doi.org/10.3390/agrochemicals2020019
  35. 35. Scott N, Chen H, Cui H. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. J Agric Food Chem. 2018;66(26):6451–3. https://doi.org/10.1021/acs.jafc.8b00964
  36. 36. Morab P, Sumanth V, Katara R, Uma V. Foliar nutrition of nano-fertilizers: A smart way to increase the growth and productivity of crops. J Pharmacogn Phytochem. 2021;10:1325–30. https://doi.org/10.22271/jppc.2021.v10.i3s.13429
  37. 37. Yadav R, Yadav J, Shekhar C. Unmet need for treatment-seeking from public health facilities in India: An analysis of sociodemographic, regional and disease-wise variations. PLOS Glob Public Health. 2022;2(4):e0000148. https://doi.org/10.1371/journal.pgph.0000148
  38. 38. Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent trends in foliar nanofertilizers: A review. Nanomaterials. 2023;13(21):2906. https://doi.org/10.3390/nano13212906
  39. 39. Tomar B, Patle T, Parihar SS, Singh P, Tomar SS. Enhancing nutrient uptake with nano fertilizers and soil amendments. In: Rajput V, Singh A, Ghazaryan K, Alexiou A, Al-Tawaha AS, editors. Harnessing NanoOmics and Nanozymes for Sustainable Agriculture. IGI Global Scientific Publishing; 2024. p. 43–59. https://doi.org/10.4018/979-8-3693-1890-4.ch003
  40. 40. Hackenberg S. Risk assessment of nanoparticles in consumer products. HNO. 2014;62(6):432–8. https://doi.org/10.1007/s00106-014-2867-8
  41. 41. Garg K, Gupta AK, Yadav P, Yadav S. Effect of nutrient-management practices on yield, nutrient uptake and economics in finger millet (Eleusine coracana) and pearl millet (Cenchrus americanus). Indian J Agron. 2020;65(3):372–7. https://doi.org/10.59797/ija.v65i3.2980
  42. 42. Singh K, Singh D, Dheer V, Singh J, Kumar A, Sachan K, et al. Responses of phosphorus and zinc on growth and yield in chickpea (Cicer arietinum L.). Int J Environ Clim Change. 2024;14:3848. https://doi.org/10.9734/IJECC/2024/v14i13848
  43. 43. Jampilek J, Kralova K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22(1):1–18. https://doi.org/10.1515/eces-2015-0018
  44. 44. Dhaliwal S, Sharma V, Shukla A, Verma V, Behera SK, Singh P, et al. Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agron. 2021;11(12):2436. https://doi.org/10.3390/agronomy11122436
  45. 45. Xiong D, Chen J, Yu T, Gao W, Ling X, Li Y, et al. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep. 2015;5:13389. https://doi.org/10.1038/srep13389
  46. 46. Rizwan M, Ali S, Zia-ur-Rehman M, Maqbool A. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res Int. 2019;26(4):3260–77. https://doi.org/10.1007/s11356-019-04174-6
  47. 47. Shah GM, Amin M, Shahid M, Ahmad I, Khalid S, Abbas G, et al. Toxicity of ZnO and Fe₂O₃ nano-agro-chemicals to soil microbial activities, nitrogen utilization, and associated human health risks. Environ Sci Eur. 2022;34(1):106. https://doi.org/10.1186/s12302-022-00687-z
  48. 48. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 2019;24(14):2558. https://doi.org/10.3390/molecules24142558
  49. 49. Siddiqui MH, Al-whaibi MH, Firoz M, Al-Khaishany MY. Role of nanoparticles in plants. In: Siddiqui M, Al-Whaibi M, Mohammad F,editors. Nanotechnology and Plant Sciences. Springer, Cham; 2015. p. 25–47. https://doi.org/10.1007/978-3-319-14502-0_2
  50. 50. Al-Saeedi A, El-Ramady H, Alshaal T, Elgarawany M, Elhawat N, Al-Otaibi A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem. 2019;139:156–67. https://doi.org/10.1016/j.plaphy.2019.03.008
  51. 51. Singh H, Sharma A, Kumar S, Arya S, Bhardwaj N, Khatri M. Recent advances in applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts. 2021;23(7):1032–49. https://doi.org/10.1039/D0EM00404A
  52. 52. Singh YK, Singh B, Katiyar D, Saikanth DR, Kumar K, Singh O, et al. Efficacy of nano fertilizers on yield, attributes and economics of wheat. Int J Environ Clim Change. 2023;13(7):291–7. https://doi.org/10.9734/IJECC/2023/v13i71879
  53. 53. Atanda SA, Shaibu RO, Agunbiade FO. Nanoparticles in agriculture: balancing food security and environmental sustainability. Discover Agric. 2025;3(1):26. https://doi.org/10.1007/s44279-025-00159-x
  54. 54. Muthuramalingam R, da Silva W, Zuverza-Mena N, Dimkpa C, White J. Nano-sized metal oxide fertilizers for sustainable agriculture: balancing benefits, risks, and risk management strategies. Nanoscale. 2024;16(43):19998–20026. https://doi.org/10.1039/D4NR01354A
  55. 55. Tyagi P, Arya A, Ramniwas S, Tyagi S. Recent trends in nanotechnology in precision and sustainable agriculture. Front Plant Sci. 2023;14:1256319. https://doi.org/10.3389/fpls.2023.1256319
  56. 56. Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Abhilash MR, Nataraj K, et al. Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels. Plant Physiol Biochem. 2024;210:108604. https://doi.org/10.1016/j.plaphy.2024.108604
  57. 57. Yadav A, Yadav K, Ahmad R, Abd-Elsalam K. Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects. Agrochemicals. 2023;2(2):220–56. https://doi.org/10.3390/agrochemicals2020016
  58. 58. Yadav A, Yadav K, Abd-Elsalam K. Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2(2):296–336. https://doi.org/10.3390/agrochemicals2020019
  59. 59. Qureshi A, Singh DK, Dwivedi S. Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol Appl Sci. 2018;7(2):3325–35. https://doi.org/10.20546/ijcmas.2018.702.398
  60. 60. Tören E. Nanomaterial penetration in compromised skin: a critical review of toxicological risks and knowledge gaps. 2025. https://doi.org/10.5281/zenodo.14788186
  61. 61. Xuan L, Ju Z, Skonieczna M, Zhou PK, Huang R. Nanoparticles-induced potential toxicity on human health: applications, toxicity mechanisms, and evaluation models. MedComm. 2023;4(4):e327. https://doi.org/10.1002/mco2.327
  62. 62. Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomed. 2013;8(6):969–81. https://doi.org/10.2217/nnm.13.49
  63. 63. Zhao Y, An Y, Wu F, Liu L, Tay FR, Jiao Y, et al. Regulation of immune microenvironments by polyetheretherketone surface topography for improving osseointegration. J Nanobiotechnol. 2025;23(1):199. https://doi.org/10.1186/s12951-025-03272-7

Downloads

Download data is not yet available.