Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Nature’s protection: Harnessing essential oils for sustainable plant pathogen control

DOI
https://doi.org/10.14719/pst.8657
Submitted
4 April 2025
Published
13-07-2025
Versions

Abstract

Essential oils (EOs) are volatile, aromatic compounds obtained from different plant parts. They contain bioactive compounds, including terpenes, phenolics and aldehydes. phenylpropanoids and other aromatic and aliphatic compounds. Due to the presence of these bioactive compounds, EO possess strong antifungal, antibacterial and antiviral properties, making EOs effective at combating a wide range of plant pathogens. Typically, EO is composed of two to three primary components and a mixture of numerous minor components, each of which contributes to its biological activity, such as the disruption of microbial cell membranes, the induction of oxidative stress, the impairment of mitochondrial activity and the inhibition of spore germination and biofilm formation. These diverse modes of action contribute to the broad-spectrum antimicrobial efficacy of EOs against plant pathogens. For instance, essential oils extracted from Cymbopogon spp. (lemongrass), Melaleuca alternifolia (tea tree) and Thymus vulgaris (thyme) have shown significant antimicrobial activity against pathogens such as Magnaporthe oryzae (rice blast fungus), Pseudomonas syringae (a bacterial plant pathogen) and Tomato leaf curl virus (a viral disease affecting tomato crops). Due to their potent monoterpenes, EOs are considered promising candidates for integrated pest management (IPM) strategies. Their biodegradability and relative safety further enhance their potential as plant-protective agents, underscoring their role in promoting agricultural productivity and environmental sustainability.

References

  1. 1. Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, et al. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants. 2023;12(16):2916. http://doi.org/10.3390/plants12162916
  2. 2. Pezantes-Orellana C, German Bermúdez F, Matías De la Cruz C, Montalvo JL, Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front Med. 2024;11:1337785.
  3. http://doi.org/10.3389/fmed.2024.1337785
  4. 3. Raveau R, Fontaine J, Lounès-Hadj Sahraoui A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods. 2020;9(3):365. http://doi.org/10.3390/foods9030365
  5. 4. Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, et al. Major biological control strategies for plant pathogens. Pathogens. 2022;11(2):273. http://doi.org/10.3390/pathogens11020273
  6. 5. Antonioli G, Fontanella G, Echeverrigaray S, Delamare AP, Pauletti GF, Barcellos T. Poly (lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chem. 2020;326:126997. http://doi.org/10.1016/j.foodchem.2020.126997
  7. 6. da Cruz Silva G, de Oliveira Filho JG, de Mori Morselli Ribeiro M, de Souza CW, Ferreira MD. Antibacterial activity of nanoemulsions based on essential oils compounds against species of Xanthomonas that cause citrus canker. Biointerface Res Appl Chem. 2021;12:1835-46. http://doi.org/10.33263/BRIAC122.18351846
  8. 7. Biniaz Y, Kavoosi G, Afsharifar A. Antiviral activity and tobacco-induced resistance, mediated by essential oil nano-emulsions from Zataria multiflora and Satureja bakhtiarica. Int J Pest Manag. 2024;70(3):432-44. http://doi.org/10.1080/09670874.2021.1985653
  9. 8. Assadpour E, Can Karaça A, Fasamanesh M, Mahdavi SA, Shariat-Alavi M, Feng J, et al. Application of essential oils as natural biopesticides; recent advances. Crit Rev Food Sci Nutr. 2024;64(19):6477-97. http://doi.org/10.1080/10408398.2023.2170317
  10. 9. Karan T, Belguzar S, Selvi B. Antibacterial activity of essential oils of Origanum bilgeri, Origanum onites, Satureja spicigera leaves against agricultural plant pathogenic bacteria. J Essent Oil Bear Plants. 2021;24(5):1159-68. http://doi.org/10.1080/0972060X.2021.2000504
  11. 10. Taglienti A, Donati L, Dragone I, Ferretti L, Gentili A, Araniti F, et al. In vivo antiphytoviral and aphid repellency activity of essential oils and hydrosols from Mentha suaveolens and Foeniculum vulgare to control Zucchini yellow mosaic virus and its vector Aphis gossypii. Plants. 2023;12(5):1078. https://doi.org/10.3390/plants12051078
  12. 11. Pandey AK, Singh P, Tripathi NN. Chemistry and bioactivities of essential oils of some Ocimum species: an overview. Asian Pac J Trop Biomed. 2014;4(9):682-94. http://doi.org/10.12980/APJTB.4.2014C77
  13. 12. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6(12):1451-74. http://doi.org/10.3390/ph6121451
  14. 13. Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed. 2012;51(5):1124-37. https://doi.org/10.1002/anie.201103110
  15. 14. Dajic Stevanovic Z, Sieniawska E, Glowniak K, Obradovic N, Pajic-Lijakovic I. Natural macromolecules as carriers for essential oils: From extraction to biomedical application. Front Bioeng Biotechnol. 2020;8:563. http://doi.org/10.3389/fbioe.2020.00563
  16. 15. Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol. 2019;2(2):49-55. http://doi.org/10.1016/j.gaost.2019.03.001
  17. 16. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem: X. 2022;13:100217. https://doi.org/10.1016/j.fochx.2022.100217
  18. 17. Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016;2016(1):3012462. https://doi.org/10.1155/2016/3012462
  19. 18. Kalhoro MT, Zhang H, Kalhoro GM, Wang F, Chen T, Faqir Y, et al. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci Rep. 2022;12(1):2191. http://doi.org/10.1038/s41598-022-06321-5
  20. 19.Yang J, Wang Q, Li L, Li P, Yin M, Xu S, et al. Chemical composition and antifungal activity of Zanthoxylum armatum fruit essential oil against Phytophthora capsici. Molecules. 2022;27(23):8636. https://doi.org/10.3390/molecules27238636
  21. 20. da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SA, Romoli JC, et al. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam: A. 2020;37(1):153-61. http://doi.org/10.1080/19440049.2019.1678771
  22. 21. Ramírez J, Gilardoni G, Ramón E, Tosi S, Picco AM, Bicchi C, et al. Phytochemical study of the Ecuadorian species Lepechinia mutica (Benth.) Epling and high antifungal activity of carnosol against Pyricularia oryzae. Pharmaceuticals. 2018;11(2):33. http://doi.org/10.3390/ph11020033
  23. 22. Soleimani H, Mostowfizadeh-Ghalamfarsa R, Zarei A. Chitosan nanoparticle encapsulation of celery seed essential oil: Antifungal activity and defense mechanisms against cucumber powdery mildew. Carbohydr Polym Technol Appl. 2024;8:100531. https://doi.org/10.1016/j.carpta.2024.100531
  24. 23. Sarkhosh A, Vargas AI, Schaffer B, Palmateer AJ, Lopez P, Soleymani A, et al. Postharvest management of anthracnose in avocado (Persea americana Mill.) fruit with plant-extracted oils. Food packag shelf life. 2017;12:16-22. https://doi.org/10.1016/j.fpsl.2017.02.001
  25. 24. Tahmasebi M, Golmohammadi A, Nematollahzadeh A, Davari M, Chamani E. Control of nectarine fruits postharvest fungal rots caused by Botrytis Cinerea and Rhizopus Stolonifer via some essential oils. J Food Sci Technol. 2020;57:1647-55. https://doi.org/10.1007/s13197-019-04197-4
  26. 25. Aksit H, Bayar Y, Simsek S, Ulutas Y. Chemical composition and antifungal activities of the essential oils of Thymus species (Thymus pectinatus, Thymus convolutus, Thymus vulgaris) against plant pathogens. J Essent Oil Bear Plants. 2022;25(1):200-7. http://doi.org/10.1080/0972060X.2022.2043189
  27. 26. Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017;220:1-8. http://doi.org/10.1016/j.foodchem.2016.09.179
  28. 27. Hendges C, Stangarlin JR, Zamban VC, Mascaro MD, Carmelo DB. Antifungal activity and control of the early blight in tomato through tea tree essential oil. Crop Prot. 2021;148:105728. https://doi.org/10.1016/j.cropro.2021.105728
  29. 28. Perveen K, Bokahri NA. Management of Alternaria leaf blight in tomato plants by mentha essential oil. Plant Prot Sci. 2020;56(3):191-6. http://doi.org/10.17221/100/2019-PPS
  30. 29. Kamsu FP, Dikongue FJ, Ngouana V, Tchinda ES, Jiogue MB, Ambata HT, et al. Effectiveness of Massep (Ocimum gratissimum L.) essential oil and its nanoemulsion toward Sclerotium rolfsii, Phytophthora infestans and Alternaria solani, pathogens associated with tomato rot diseases. Biocatal Agric Biotechnol. 2023;47:102591. https://doi.org/10.1016/j.bcab.2022.102591
  31. 30. Milanovic SD, Milenkovic IL, Lazarevic JM, Todosijevic MM, Ljujic JP, Mitic ZS, et al. Biological activity of essential oils of Calocedrus decurrens and Cupressus arizonica on Lymantria dispar larvae and Phytophthora root pathogens. Ind Crops Prod. 2024;215:118602. https://doi.org/10.1016/j.indcrop.2024.118602
  32. 31. Wang B, Li P, Yang J, Yong X, Yin M, Chen Y, et al. Inhibition efficacy of Tetradium glabrifolium fruit essential oil against Phytophthora capsici and potential mechanism. Ind Crops Prod. 2022;176:114310. http://doi.org/10.1016/j.indcrop.2021.114310
  33. 32. Zhang X, Zeng F, Niu Y, Huang Y, Chang J, Liu Z, et al. Essential oil was extraction from Cinnamomum camphor peel using microwave as an aid and study of their inhibitory effect on Pseudocercospora psidii fungi. Arabian J Chem. 2024;17(3):105643. http://doi.org/10.1016/j.arabjc.2024.105643
  34. 33. Maghsoodi F, Taheri P, Tarighi S. Isolation, characterization and control of Botrytis spp. pathogenic on strawberry in Iran. Heliyon. 2025;11(2):e42037.
  35. http://doi.org/10.1016/j.heliyon.2025.e42037
  36. 34. Benbelaïd F, Khadir A, Rebai R, Mebarki S, Benziane Y, Bendahou M, et al. Essential oils of Thymus munbyanus subsp. coloratus: chemical variability and evaluation of biological activities. J Essent Oil Bear Plants. 2024;27(2):469-81. http://doi.org/10.1080/0972060X.2024.2311117
  37. 35. Azeem M, Zaman T, Abbasi AM, Abid M, Mozuratis R, Alwahibi MS, et al. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arabian J Chem. 2022;15(1):103482. http://doi.org/10.1016/j.arabjc.2021.103482
  38. 36. Rafiee S, Ramezanian A, Mostowfizadeh-Ghalamfarsa R, Niakousari M, Saharkhiz MJ, Yahia E. Nano-emulsion of denak (Oliveria decumbens Vent.) essential oil: ultrasonic synthesis and antifungal activity against Penicillium digitatum. Food Measure 2022;16:324-31. http://doi.org/10.1007/s11694-021-01163-7
  39. 37. Chen YX, Li W, Zeng H, Zhou G, Cai Q. Transcriptome analysis reveals the mechanism of dill seed essential oil against Sclerotinia sclerotiorum. Nat Prod Commun. 2022;17(8):1934578X221119910. http://doi.org/10.1177/1934578X221119910
  40. 38. Türkmen M, Kara M, Maral H, Soylu S. Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. J Food Process Preserv. 2022;46(6):e15787. http://doi.org/10.1111/jfpp.15787
  41. 39. Yuan T, Hua Y, Zhang D, Yang C, Lai Y, Li M, et al. Efficacy and antifungal mechanism of rosemary essential oil against Colletotrichum gloeosporioides. Forests. 2024;15(2):377. https://doi.org/10.3390/f15020377
  42. 40. Darshan K, Kannan AK, Vanitha S. Antifungal activity of cinnamon and thyme oil against Colletotrichum gloeosporioides causing anthracnose disease of papaya. J Mycol Plant Pathol. 2019;49(3):273-84.
  43. 41. Jaramillo-Colorado BE, Arroyo-Salgado B, Palacio-Herrera FM. Antifungal activity of four Piper genus essential oils against postharvest fungal Fusarium spp. isolated from Mangifera indica L. and Persea americana Mill. fruits. Ind Crops Prod. 2025;223:120170. http://doi.org/10.1016/j.indcrop.2024.120170
  44. 42. Castro JC, Pante GC, Centenaro BM, Almeida RT, Pilau EJ, Dias Filho BP, et al. Antifungal and antimycotoxigenic effects of Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii essential oils against Fusarium verticillioides. Food Addit Contam: A. 2020;37(9):1531-41. http://doi.org/10.1080/19440049.2020.1778183
  45. 43. Chang Y, Harmon PF, Treadwell DD, Carrillo D, Sarkhosh A, Brecht JK. Biocontrol potential of essential oils in organic horticulture systems: From farm to fork. Front Nutr. 2022;8:805138. http://doi.org/10.3389/fnut.2021.805138
  46. 44. Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, et al. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019;134:103580. https://doi.org/10.1016/j.micpath.2019.103580
  47. 45. Patterson JE, McElmeel L, Wiederhold NP. In vitro activity of essential oils against gram-positive and gram-negative clinical isolates, including carbapenem-resistant Enterobacteriaceae. Open Forum Infect Dis. 2019;6(12):ofz502. http://doi.org/10.1093/ofid/ofz502
  48. 46. Zefzoufi M, Smaili A, Fdil R, Rifai LA, Faize L, Koussa T, et al. Composition of essential oil of Moroccan Dysphania ambrosioides and its antimicrobial activity against bacterial and fungal phytopathogens. J Plant Pathol. 2020;102:47-58. http://doi.org/10.1007/s42161-019-00371-x
  49. 47. Merad N, Andreu V, Chaib S, de Carvalho Augusto R, Duval D, Bertrand C, et al. Essential oils from two Apiaceae species as potential agents in organic crops protection. Antibiotics. 2021;10(6):636. http://doi.org/10.3390/antibiotics10060636.
  50. 48. Prieto MC, Lapaz MI, Lucini EI, Pianzzola MJ, Grosso NR, Asensio CM. Thyme and suico essential oils: promising natural tools for potato common scab control. Plant Biol. 2020;22(1):81-9. http://doi.org/10.1111/plb.13048
  51. 49. Rastgou M, Rezaee Danesh Y, Ercisli S, Sayyed RZ, El Enshasy HA, Dailin DJ, et al. The effect of some wild grown plant extracts and essential oils on Pectobacterium betavasculorum: the causative agent of bacterial soft rot and vascular wilt of sugar beet. Plants. 2022;11(9):1155. http://doi.org/10.3390/plants11091155
  52. 50. Sharma M, Suma R, Chowdhury N, Borgohain T, Hiremath S, Chikkaputtaiah C, et al. In vitro and in silico analysis of broad-spectrum bio-activity of essential oils derived from medicinal and aromatic plants against microbial phytopathogens. Eur J Plant Pathol. 2024;170(4):955-71. http://doi.org/10.1007/s10658-024-02906-0
  53. 51. da Silva IR, Fernandes CC, Gonçalves DS, Martins CH, Miranda ML. Chemical composition and anti-Xanthomonas citri activities of essential oils from Schinus molle L. fresh and dry leaves and of its major constituent spathulenol. Nat Prod Res. 2024;38(19):3476-80. http://doi.org/10.1080/14786419.2023.2249584
  54. 52. Polito F, Papaianni M, Woo SL, Malaspina P, Cornara L, De Feo V. Artemisia arborescens (Vaill.) L.: Micromorphology, essential oil composition, and its potential as an alternative biocontrol product. Plants. 2024;13(6):825. http://doi.org/10.3390/plants13060825
  55. 53. Kim JY, Kim JY, Park JY, Kim JS, Seo MK, Shin MK, et al. Synergistic bactericidal effects of carvone and ß-lactams against Xanthomonas campestris pv. vesicatoria. Appl Biol Chem. 2023;66(1):44. http://doi.org/10.1186/s13765-023-00803-4
  56. 54. Shabir S, Tehmina A, Waheed A, Saddam H, Rafiq H, Li G. Biological evaluation, GC–MS profiling, and molecular docking studies of some essential oils against postharvest pathogens of maize. Arabian J Chem. 2023;16(12):105339. http://doi.org/10.1016/j.arabjc.2023.105339.
  57. 55. Rodrigues TC, Gois IB, Fernandes RP, Blank AF, Sandes RD, Neta MT, et al. Chemical characterization and antimicrobial activity of essential oils from Croton grewioides Baill. accessions on the phytopathogen Xanthomonas campestris pv. campestris. Pestic Biochem Physiol. 2023;193:105454. https://doi.org/10.1016/j.pestbp.2023.105454
  58. 56. Vishakha K, Das S, Das SK, Banerjee S, Ganguli A. Antibacterial, anti-biofilm, and anti-virulence potential of tea tree oil against leaf blight pathogen Xanthomonas oryzae pv. oryzae instigates disease suppression. Braz J Microbiol. 2022;53:19-32. https://doi.org/10.1007/s42770-021-00657-2
  59. 57. Camele I, Grul’ová D, Elshafie HS. Chemical composition and antimicrobial properties of Mentha × piperita cv.‘Kristinka’ essential oil. Plants. 2021;10(8):1567. https://doi.org/10.3390/plants10081567
  60. 58. Lee JE, Jung M, Lee SC, Huh MJ, Seo SM, Park IK. Antibacterial mode of action of trans-cinnamaldehyde derived from cinnamon bark (Cinnamomum verum) essential oil against Agrobacterium tumefaciens. Pestic Biochem Physiol. 2020;165:104546. https://doi.org/10.1016/j.pestbp.2020.02.012
  61. 59. Taglienti A, Donati L, Ferretti L, Tomassoli L, Sapienza F, Sabatino M, et al. In vivo antiphytoviral activity of essential oils and hydrosols from Origanum vulgare, Thymus vulgaris, and Rosmarinus officinalis to control Zucchini yellow mosaic virus and Tomato leaf curl New Delhi virus in Cucurbita pepo L. Front Microbiol. 2022;13:840893. https://doi.org/10.3389/fmicb.2022.840893
  62. 60. Bezic N, Vuko E, Dunkic V, Rušcic M, Blaževic I, Burcul F. Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules. 2011;16(9):8119-29. https://doi.org/10.3390/molecules16098119
  63. 61. Paduch-Cichal E, Mirzwa-Mróz E, Wojciechowska P, Baczek K, Kosakowska O, Weglarz Z, et al. Antiviral activity of selected essential oils against Cucumber mosaic virus. Plants. 2022;12(1):18. https://doi.org/10.3390/plants12010018
  64. 62. Vuko E, Rusak G, Dunkic V, Kremer D, Kosalec I, Rada B, et al. Inhibition of satellite RNA associated Cucumber mosaic virus infection by essential oil of Micromeria croatica (Pers.) Schott. Molecules. 2019;24(7):1342. https://doi.org/10.3390/molecules24071342
  65. 63. Besati M, Safarnejad MR, Aliahmadi A, Farzaneh M, Rezadoost H, Rafati H. Optimization and characterization of essential oil-loaded nanoemulsions for enhanced antiviral activity against Tobacco mosaic virus (TMV) in tobacco plants. Ind Crops Prod. 2024;220:119253. https://doi.org/10.1016/j.indcrop.2024.119253
  66. 64. Vuko E, Dunkic V, Rušcic M, Nazlic M, Mandic N, Soldo B, et al. Chemical composition and new biological activities of essential oil and hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants. 2021;10(5):1014. https://doi.org/10.3390/plants10051014
  67. 65. Powers MJ, Trent MS. Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. Proc Natl Acad Sci. 2018;115(36):E8518-27. https://doi.org/10.1073/pnas.1806714115
  68. 66. May KL, Grabowicz M. The bacterial outer membrane is an evolving antibiotic barrier. Proc Natl Acad Sci. 2018;115(36):8852-4. https://doi.org/10.1073/pnas.1812779115
  69. 67. Yap PS, Yusoff K, Lim SH, Chong CM, Lai KS. Membrane disruption properties of essential oils—A double-edged sword? Processes. 2021;9(4):595. https://doi.org/10.3390/pr9040595
  70. 68. Bouyahya A, Abrini J, Dakka N, Bakri Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J Pharm Anal. 2019;9(5):301-11. https://doi.org/10.1016/j.jpha.2019.03.001
  71. 69. Li ZH, Cai M, Liu YS, Sun PL, Luo SL. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules. 2019;24(8):1577. https://doi.org/10.3390/molecules24081577
  72. 70. da Silva RS, de Oliveira MM, de Melo JO, Blank AF, Corrêa CB, Scher R, et al. Antimicrobial activity of Lippia gracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pestic Biochem Physiol. 2019;160:40-8. https://doi.org/10.1016/j.pestbp.2019.06.014
  73. 71. Li CM, Yu JP. Chemical composition, antimicrobial activity and mechanism of action of essential oil from the leaves of Macleaya cordata (Willd.) R. Br. J Food Saf. 2015;35(2):227-36. https://doi.org/10.1111/jfs.12175
  74. 72. da Silva Bomfim N, Nakassugi LP, Oliveira JF, Kohiyama CY, Mossini SA, Grespan R, et al. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015;166:330-6. https://doi.org/10.1016/j.foodchem.2014.06.019
  75. 73. Yao Y, Li Y, Zhao L, Li S, Zhou Z. Citrus limon (L.) Burm. f. cv. Eureka essential oil controls blue mold in citrus by damaging the cell membrane of Penicillium italicum. LWT. 2023;188:115456. https://doi.org/10.1016/j.lwt.2023.115456
  76. 74. Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015;89:1209-26. https://doi.org/10.1007/s00204-015-1520-y
  77. 75. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373-99. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  78. 76. Bowbe KH, Salah KB, Moumni S, Ashkan MF, Merghni A. Anti-staphylococcal activities of Rosmarinus officinalis and Myrtus communis essential oils through ROS-mediated oxidative stress. Antibiotics. 2023;12(2):266. https://doi.org/10.3390/antibiotics12020266
  79. 77. Kim JE, Lee JE, Huh MJ, Lee SC, Seo SM, Kwon JH, et al. Fumigant antifungal activity via reactive oxygen species of Thymus vulgaris and Satureja hortensis essential oils and constituents against Raffaelea quercus-mongolicae and Rhizoctonia solani. Biomolecules. 2019;9(10):561. https://doi.org/10.3390/biom9100561
  80. 78. Ma W, Chen C, Sa Q, Zhang Y, Ji J, Bi B, et al. Portulaca oleracea (L.) essential oil inhibits Pestalotiopsis neglecta and controls black spot needle blight in Pinus sylvestris var. mongolica (Litv.). Physiol Mol Plant Pathol. 2024;134:102428. https://doi.org/10.1016/j.pmpp.2024.102428
  81. 79. Cui K, He Y, Wang M, Li M, Jiang C, Wang M, et al. Antifungal activity of Ligusticum chuanxiong essential oil and its active composition butylidenephthalide against Sclerotium rolfsii. Pest Manag Sci. 2023;79(12):5374-86. https://doi.org/10.1002/ps.7751
  82. 80. Soudani S, Poza-Carrión C, De la Cruz Gómez N, González-Coloma A, Andrés MF, Berrocal-Lobo M. Essential oils prime epigenetic and metabolomic changes in tomato defense against Fusarium oxysporum. Front Plant Sci. 2022;13:804104. https://doi.org/10.3389/fpls.2022.804104
  83. 81. Li Q, McNeil B, Harvey LM. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radic Biol Med. 2008;44(3):394-402. https://doi.org/10.1016/j.freeradbiomed.2007.09.019
  84. 82. Zeng H, Chen X, Liang J. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol. 2015;64(1):93-103. https://doi.org/10.1099/jmm.0.077768-0
  85. 83. Venkatesan R, Karuppiah PS, Arumugam G, Balamuthu K. ß-Asarone exhibits antifungal activity by inhibiting ergosterol biosynthesis in Aspergillus niger ATCC 16888. Proc Natl Acad Sci India B. 2019;89:173-84. https://doi.org/10.1007/s40011-017-0930-4
  86. 84. Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem. 2017;234:62-7. https://doi.org/10.1016/j.foodchem.2017.04.172
  87. 85. Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One. 2012;7(1):e30147. https://doi.org/10.1371/journal.pone.0030147
  88. 86. Zheng S, Jing G, Wang X, Ouyang Q, Jia L, Tao N. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem. 2015;178:76-81. https://doi.org/10.1016/j.foodchem.2015.01.077
  89. 87. Voundi SO, Nyegue M, Lazar I, Raducanu D, Ndoye FF, Stamate M, et al. Effect of essential oils on germination and growth of some pathogenic and spoilage spore-forming bacteria. Foodborne Pathog Dis. 2015;12(6):551-9. https://doi.org/10.1089/fpd.2014.1892
  90. 88. Sharma A, Rajendran S, Srivastava A, Sharma S, Kundu B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J Biosci Bioeng. 2017;123(3):308-13. https://doi.org/10.1016/j.jbiosc.2016.09.011
  91. 89. Huang X, Liu T, Zhou C, Huang Y, Liu X, Yuan H. Antifungal activity of essential oils from three Artemisia species against Colletotrichum gloeosporioides of mango. Antibiotics. 2021;10(11):1331. https://doi.org/10.3390/antibiotics10111331
  92. 90. Samandari-Najafabadi N, Taheri P, Tarighi S. Antifungal and antivirulence effects of Citrus sinensis essential oil on Alternaria pathogens in orange. J Plant Pathol. 2024;106(3):1153-71. https://doi.org/10.1007/s42161-024-01638-8
  93. 91. Huang J, Liu S, Liu R, Yi Y, Li C, Xiao Z, et al. Mechanisms of Litsea cubeba essential oil in the control of Colletotrichum scovillei in pepper (Capsicum annuum L.): cell membrane/wall perspective. Physiol Mol Plant Pathol. 2023;127:102103. https://doi.org/10.1016/j.pmpp.2023.102103
  94. 92. Luciardi MC, Blázquez MA, Alberto MR, Cartagena E, Arena ME. Lemon oils attenuate the pathogenicity of Pseudomonas aeruginosa by quorum sensing inhibition. Molecules. 2021;26(10):2863. https://doi.org/10.3390/molecules26102863
  95. 93. Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89-105. https://doi.org/10.1016/j.mimet.2010.08.018
  96. 94. Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: a review. J Microbiol Methods. 2024;426:110874. https://doi.org/10.1016/j.ijfoodmicro.2024.110874
  97. 95. Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics. 2020;9(4):147. https://doi.org/10.3390/antibiotics9040147
  98. 96. Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, et al. Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Crit Rev Food Sci Nutr. 2022;62(7):1740-51. https://doi.org/10.1080/10408398.2020.1846494
  99. 97. Sotelo JP, Rovey MF, Carezzano ME, Moliva MV, Oliva MD. Characterization of Pseudomonas syringae strains associated with soybean bacterial blight and in vitro inhibitory effect of oregano and thyme essential oils. Physiol Mol Plant Pathol. 2023;128:102133. https://doi.org/10.1016/j.pmpp.2023.102133
  100. 98. Singh A, Gupta R, Tandon S, Pandey R. Thyme oil reduces biofilm formation and impairs virulence of Xanthomonas oryzae. Front Microbiol. 2017;8:1074. https://doi.org/10.3389/fmicb.2017.01074

Downloads

Download data is not yet available.