Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

GC-MS-based phytochemical profiling and anti-diabetic efficacy of Sargassum tenerrimum-mediated silver nanoparticles

DOI
https://doi.org/10.14719/pst.8697
Submitted
6 April 2025
Published
24-10-2025
Versions

Abstract

Marine macroalgae, particularly Sargassum tenerrimum, have emerged as a significant source of bioactive compounds with potential therapeutic applications. Study focuses on the synthesis, characterization and antidiabetic activity of silver nanoparticles (AgNPs) derived from S. tenerrimum chloroform extract. GC-MS analysis revealed diverse bioactives, including fatty acids such as hexadecanoic acid, oleic acid unsaturated compounds like α-linolenic acid and linoleic acid. These compounds enhance insulin sensitivity, regulate lipid metabolism and support β-cell functionality. Additionally, ethyl isoallocholate and glycine derivatives contribute to insulin synthesis and glucose homeostasis through molecular pathways. AgNPs were synthesized via an eco-friendly approach, confirmed by UV-Vis spectroscopy, FT-IR analysis (hydroxyl and carbonyl functional groups for reduction and stabilization) and SEM imaging (spherical nanoparticles with nanoscale diameters). Glucose utilization assays conducted on L6 skeletal muscle cells demonstrated significant, dose-dependent activity, with 91.26 % glucose uptake. Work highlights the dual role of S. tenerrimum bioactives in glucose metabolism modulation and nanoparticle stabilization, emphasizing their therapeutic synergy. The findings establish S. tenerrimum-derived AgNPs as promising, sustainable agents for managing diabetes, warranting further molecular and pharmacological investigations for broader biomedical applications.

References

  1. 1. Salehi B, Sharifi-Rad J, Seca AML, Pinto DCGA, Michalak I, Trincone A, et al. Current trends on seaweeds: looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules. 2019;24(22):4182. https://doi.org/10.3390/molecules24224182
  2. 2. Tu NV. Diversity of the genus Sargassum (Fucales: Sargassaceae) in Tho Chu Archipelago, Kien Giang Province. AJB. 2020;42(2). https://doi.org/10.15625/2615-9023/v42n2.14992
  3. 3. Van Tu N, Trang LT, Phuong Thao TT. Diversity and distribution of the brown macroalgae (Phaeophyceae Kjellman, 1891) in cham islands, Quang Nam province, Vietnam. AJB. 2021;43(3):37-45. https://doi.org/10.15625/2615-9023/15360
  4. 4. Aouissi M, Sellam LN, Boudouresque CF, Blanfuné A, Derbal F, Frihi H, et al. Insights into the species diversity of the genus Sargassum (Phaeophyceae) in the Mediterranean Sea, with a focus on a previously unnoticed taxon from Algeria. Medit Mar Sci. 2018;19(1):48. https://doi.org/10.12681/mms.14079
  5. 5. Athulya K, T Anitha. Algal biodiversity along Southern coasts of India: a review. IJARBS. 2020;7(10):32-42.
  6. 6. Kumar N, Kumar RN, Bora A, Amb MK, Chakraborthy S. An evaluation of the pigment composition of eighteen marine macroalgae collected from Okha Coast, Gulf of Kutch, India. Our Nature. 2009;7(1):48-55. https://doi.org/10.3126/on.v7i1.2553
  7. 7. Sahayaraj K, Jeeva YM. Nymphicidal and ovipositional efficacy of seaweed Sargassum tenerrimum (J. Agardh) against Dysdercus cingulatus (Fab.) (Pyrrhocoridae). Chilean J Agric Res. 2012;72(1):152-6. https://doi.org/10.4067/S0718-58392012000100024
  8. 8. Sinha S, Astani A, Ghosh T, Schnitzler P, Ray B. Polysaccharides from Sargassum tenerrimum: structural features, chemical modification, and anti-viral activity. Phytochemistry. 2010;71(2-3):235-42. https://doi.org/10.1016/j.phytochem.2009.10.014
  9. 9. Raguraman V, Stanley Abraham L, Jyotsna J, Palaniappan S, Gopal S, Thirugnanasambandam R, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr Polym. 2019;203:441-9. https://doi.org/10.1016/j.carbpol.2018.09.056
  10. 10. Haider S, Li Z, Lin H, Jamil K, Wang BP. In vivo study of antiallergenicity of ethanol extracts from Sargassum tenerrimum, Sargassum cervicorne and Sargassum graminifolium turn. Eur Food Res Technol. 2009;229(3):435-41. https://doi.org/10.1007/s00217-009-1066-4
  11. 11. Ramakrishnan AR, Gana Sundari G, Mala K, Prakash A. Preliminary physico-chemical properties of marine macroalga Sargassum tenerrimum (J. Agardh) (Fucales, Sargassaceae). Int Res J Chem. 2015;11(2015):27-43.
  12. 12. Kumar P, Senthamilselvi S, Govindaraju M. GC-MS profiling and antibacterial activity of Sargassum tenerrimum. J Pharm Res. 2013;6(1):88-92. https://doi.org/10.1016/j.jopr.2012.11.019
  13. 13. Lindsey APJ, Issac R, Prabha ML, Renitta RE, Catherine A, Samrot AV, et al. Evaluation of antidiabetic activity of Sargassum tenerrimum in streptozotocin-induced diabetic mice. 2021;15(December):2462-72. https://doi.org/10.22207/JPAM.15.4.73
  14. 14. Patra S, Muthuraman MS, Prabhu ATJR, Priyadharshini RR, Parthiban S. Evaluation of antitumor and antioxidant activity of Sargassum tenerrimum against Ehrlich ascites carcinoma in mice. 2015;16:915-21. https://doi.org/10.7314/apjcp.2015.16.3.915
  15. 15. Veeragoni D, Deshpande SS, Singh V, Misra S, Mutheneni SR. In vitro and in vivo antimalarial activity of green synthesized silver nanoparticles using Sargassum tenerrimum - a marine seaweed. Acta Trop. 2023;245:106982. https://doi.org/10.1016/j.actatropica.2023.106982
  16. 16. Albratty M, Alhazmi HA, Meraya AM, Najmi A, Alam MS, Rehman Z, et al. Spectral analysis and antibacterial activity of the bioactive principles of Sargassum tenerrimum J. Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Braz J Biol. 2023;83:e249536. https://doi.org/10.1590/1519-6984.249536
  17. 17. Ani NI, Okolo KO, Offiah RO. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels). Futur J Pharm Sci. 2023;9(1):3. https://doi.org/10.1186/s43094-022-00455-z
  18. 18. Ahmad K, Asif HM, Afzal T, Khan MA, Younus M, Khurshid U, et al. Green synthesis and characterization of silver nanoparticles through the Piper cubeba ethanolic extract and their enzyme inhibitory activities. Front Chem. 2023;11:1065986. https://doi.org/10.3389/fchem.2023.1065986
  19. 19. Devi JS, Bhimba BV, Peter DM. Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J Mar Sci. 2013;42(1):125-30.
  20. 20. Giri AK, Jena B, Biswal B, Pradhan AK, Arakha M, Acharya S, et al. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci Rep. 2022;12(1):8383. https://doi.org/10.1038/s41598-022-12484-y
  21. 21. Khan A, More KC, Mali MH, Deore SV, Patil MB. Phytochemical screening and Gas chromatography-mass spectrometry analysis on Ischaemum pilosum (Kleinex Willd.). Plant Sci Today. 2023;10(4). https://doi.org/10.14719/pst.2349
  22. 22. M. B. Patil, P. A. Khan. Ethnobotanical, phytochemical and Fourier Transform Infrared Spectrophotometer (FTIR) studies of Catunaregam spinosa (Thunb.) Tirven. J Chem Pharm Sci. 2017;10(03):950-5. https://doi.org/10.5281/ZENODO.7562415
  23. 23. Abubakar M, Majinda R. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines. 2016;3(1):3. https://doi.org/10.3390/medicines3010003
  24. 24. Patil MB, Khan PA. Primary phytochemical studies of Catunaregam spinosa (thunb.) Tirven for secondary metabolites. Int J Pharm Bio Sci. 2017;8(2):320-3. https://doi.org/10.22376/ijpbs.2017.8.2.p320-323
  25. 25. Uma Suganya KS, Govindaraju K, Veena Vani C, Premanathan M, Ganesh Kumar VK. In vitro biological evaluation of anti‐diabetic activity of organic–inorganic hybrid gold nanoparticles. IET Nanobiotechnol. 2019;13(2):226-9. https://doi.org/10.1049/iet-nbt.2018.5139
  26. 26. Jini D, Sharmila S, Anitha A, Pandian M, Rajapaksha RMH. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci Rep. 2022;12(1):22109. https://doi.org/10.1038/s41598-022-24818-x
  27. 27. Jerine I, Selvaraj Jayaraman, Vishnu Priya Veeraraghavan. Antidiabetic and antioxidant potential of ethyl iso-allocholate is mediated through insulin receptor/IRS-1/Akt/GLUT 4 mediated pathways: in vitro and in silico mechanisms. Texila International Journal of Public Health. 2024;4(12):1-10.
  28. 28. Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia–reperfusion injury. J Mol Cell Cardiol. 2009;46(3):309-17. https://doi.org/10.1016/j.yjmcc.2008.12.003
  29. 29. Kassab E, Mehlmer N, Brueck T. GFP scaffold-based engineering for the production of unbranched very long chain fatty acids in Escherichia coli with oleic acid and cerulenin supplementation. Front Bioeng Biotechnol. 2019;7:408. https://doi.org/10.3389/fbioe.2019.00408
  30. 30. Krishnamoorthy K, Subramaniam P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Sch Res Notices. 2014;2014(1):567409. https://doi.org/10.1155/2014/567409
  31. 31. Jang J-Y, Droz PO, Kim S. Biological monitoring of workers exposed to ethylbenzene and co-exposed to xylene. Int Arch Occ Env Health. 2000;74(1):31-7. https://doi.org/10.1007/s004200000181
  32. 32. Ali HM, Rizwan Khan M, Essawy AA, Nayl AEAA, Ibrahim H, Gomaa H, et al. Sensitive analysis of some detrimental volatile organic compounds in fabric, carpet and air freshener using solid phase extraction and gas chromatography–mass spectrometry. Bull Chem Soc Ethiopia. 2024;38(6):1543-56. https://doi.org/10.4314/bcse.v38i6.4
  33. 33. Sharma M, Latwal S, Rao A. Characterization of bioactive compounds in the methanolic extract of moss Herpetineuron toccoae (sull. & lesq.) Cardot using GC-MS analysis. Plant Arch. 2024;24(1):395-403. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.055
  34. 34. Sasikala K, Mohan SC. Total phenolic, flavanoid contents and GC-MS analysis of Canthium coromandelicum leaves extract. Int J Pharm Pharm Sci. 2014;6(8):379-81.
  35. 35. Musa N, Banerjee S, Maspalma GA, Usman LU, Hussaini B. Assessment of the phytochemical, antioxidant and larvicidal activity of essential oil extracted from Simple leaf Chaste tree [Vitex trifolia] leaves obtained from Ganye Local Government, Adamawa State-Nigeria. Mater Today Proc. 2022;49(8):3435-8. https://doi.org/10.1016/j.matpr.2021.03.375
  36. 36. Moussa TAA, Almaghrabi OA. Fatty acid constituents of Peganum harmala plant using gas chromatography mass spectroscopy. Saudi J Biol Sci. 2016;23(3):397-403. https://doi.org/10.1016/j.sjbs.2015.04.013
  37. 37. Salem MB, Morsi EA, El-Wakil EA, Lakkany NME-, Shousha TA-, Hady HA-. HPLC fingerprinting/GC-MS analysis, and efficacy of Hypericum perforatum against cisplatin-induced hepato-renal toxicity in mice with insights into the TXNIP/NLRP3 pathway. J Appl Pharm Sci. 2023;13(9):37-47. https://doi.org/10.7324/JAPS.2023.6683
  38. 38. Taha M, Elazab ST, Abdelbagi O, Saati AA, Babateen O, Baokbah TAS, et al. Phytochemical analysis of Origanum majorana L. extract and investigation of its antioxidant, anti-inflammatory and immunomodulatory effects against experimentally induced colitis downregulating Th17 cells. J Ethnopharmacol. 2023;317:116826. https://doi.org/10.1016/j.jep.2023.116826
  39. 39. Huda JAT, Imad HH, Salah AI, Mohammed YH. Biochemical analysis of Origanum vulgare seeds by Fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). J Pharmacognosy Phytother. 2015;7(9):221-37. https://doi.org/10.5897/JPP2015.0362
  40. 40. Kadhim MJ, Al-Rubaye AF, Hameed IH. Determination of bioactive compounds of methanolic extract of Vitis vinifera using GC-MS. IJTPR. 2017;9(02). https://doi.org/10.25258/ijtpr.v9i02.9047
  41. 41. Deepa K, Jahirhussain G. GC-MS analysis of whole plant extracts of Mecardonia procumbens (Mill.) small. Bull Env Pharmacol Life Sci. 2022;11(8):08-14.
  42. 42. Vasumathi D, Senguttuvan S. The major phyto-compounds heptasiloxane, hexadecamethyl- and 1,1-dimethylethyl 3-Phenyl-2-propenoate derived from Indigofera tinctoria medicinal flora tested against various target medical and agronomic pests. IJST. 2023;16(16):1178-86. https://doi.org/10.17485/IJST/v16i16.310
  43. 43. Natarajan P, Singh S, Balamurugan K. Gas chromatography-mass spectrometry (GC-MS) analysis of bio active compounds presents in Oeophylla smaragdina. Res J Pharm Technol. 2019;12(6):2736-41. https://doi.org/10.5958/0974-360X.2019.00458.X
  44. 44. Shahare NH, Bodele SK. Phytochemical and GC-MS analysis of Dendrophthoe falcata (L.f.) Ettingsh stem. EJMP. 2019;29(4):1-8. https://doi.org/10.9734/ejmp/2019/v29i430159
  45. 45. Madu AN, Iwu CI, Joseph EE, Jaiyeola AT, Maduako KN, Madu JN. GC-MS, chemical characterization and anti-microbial activity of Moringa oleifera leaf extract. Adv J Sci Technol Eng. 2024;4(1):97-104. https://doi.org/10.52589/AJSTE-4BW6TB9I
  46. 46. Ameera OH, Ghaidaa JM, Mohammed YH, Imad HH. Phytochemical screening of methanolic dried galls extract of Quercus infectoria using gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). J Pharmacognosy Phytother. 2016;8(3):49-59. https://doi.org/10.5897/JPP2015.0368
  47. 47. Khan HA, Ghufran M, Shams S, Jamal A, Khan A, Abdullah, et al. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through in-depth in-vitro and in-vivo analysis. Front Pharmacol. 2023;14:1194809. https://doi.org/10.3389/fphar.2023.1194809
  48. 48. Zhuo Y, Zhao Y-G, Zhang Y. Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. Molecules. 2024;29(20):4854. https://doi.org/10.3390/molecules29204854
  49. 49. Haber EP, Hirabara SM, Gomes AD, Curi R, Carpinelli AR, Carvalho CRO. Palmitate modulates the early steps of insulin signalling pathway in pancreatic islets. FEBS Lett. 2003;544(1–3):185–8. https://doi.org/10.1016/S0014-5793(03)00503-9
  50. 50. Hernández-Cáceres MP, Toledo-Valenzuela L, Díaz-Castro F, Ávalos Y, Burgos P, Narro C, et al. Palmitic acid reduces the autophagic flux and insulin sensitivity through the activation of the free fatty acid receptor 1 (FFAR1) in the hypothalamic neuronal cell line N43/5. Front Endocrinol. 2019;10:176. https://doi.org/10.3389/fendo.2019.00176
  51. 51. López-Gómez C, Santiago-Fernández C, García-Serrano S, García-Escobar E, Gutiérrez-Repiso C, Rodríguez-Díaz C, et al. Oleic acid protects against insulin resistance by regulating the genes related to the PI3K signaling pathway. JCM. 2020;9(8):2615. https://doi.org/10.3390/jcm9082615
  52. 52. Yan H, Zhang S, Yang L, Jiang M, Xin Y, Liao X, et al. The antitumor effects of α-linolenic acid. JPM. 2024;14(3):260. https://doi.org/10.3390/jpm14030260
  53. 53. Hamilton JS, Klett EL. Linoleic acid and the regulation of glucose homeostasis: a review of the evidence. PLEFA. 2021;175:102366. https://doi.org/10.1016/j.plefa.2021.102366
  54. 54. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is ssential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102-9. https://doi.org/10.1172/JCI25604
  55. 55. Yan-Do R, Duong E, Manning Fox JE, Dai X, Suzuki K, Khan S, et al. A Glycine-insulin autocrine feedback loop enhances insulin secretion from human β-cells and is impaired in Type 2 diabetes. Diabetes. 2016;65(8):2311-21. https://doi.org/10.2337/db15-1272

Downloads

Download data is not yet available.