Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancements in cotton defoliation: From chemical harvest aids to genomic innovations

DOI
https://doi.org/10.14719/pst.8882
Submitted
15 April 2025
Published
11-09-2025
Versions

Abstract

Cotton is a crucial crop in the global textile market and its increasing demand necessitated the adoption of improved agronomic practices. Defoliation plays a vital role in enhancing harvesting efficiency and indirectly improves fibre quality by minimizing leaf trash contamination during mechanical harvest. This review critically examines the physiological, hormonal and molecular mechanisms governing defoliation in cotton, with particular focus on the roles of auxin, ethylene, abscisic acid and jasmonic acid in regulating leaf abscission. The complex interactions between these hormones influence the activation of the abscission zone and the efficiency of leaf drop. However, several challenges affect the performance of defoliants, including environmental variability, genetic differences among cultivars and the potential health and ecological risks associated with chemical defoliants. The differential response of cotton cultivars to defoliants complicates application strategies, often leading to inconsistent defoliation and increased production cost. To address these challenges, a multi-faceted approaches like deeper understanding of the molecular basis of defoliation, enhancement of defoliant efficacy and the development of cultivars with enhanced defoliant response are essential. This approach is supported by precision agriculture technologies, such as Unmanned Aerial Vehicle (UAV)-assisted spraying, optimized harvest-aid timing and dosage and strategic defoliant selection. Additionally, the identification of candidate genes and QTLs associated with defoliation response opens new opportunities for developing cultivars optimized for mechanical harvesting. This review stresses the need for integrated strategies that harmonize increased cotton production with ecological considerations. It calls for future research on sustainable practices, improved defoliation methods and the development of genotypes responsive to defoliants to enhance resilience in cotton cultivation.

References

  1. 1. USDA. Production – Cotton; 2025.
  2. 2. Khadi BM, Santhy V, Yadav MS. Cotton: an introduction. Cott Biotechnol Adv. 2010;1–14. https://doi.org/10.1007/978-3-642-04796-1_1
  3. 3. Khanpara BM, Vala VS. Cotton harvesting. Int J Agric Sci. 2023;19:329–35. https://doi.org/10.15740/HAS/IJAS/19.1/329-335
  4. 4. Research and Markets. Cotton Market Forecast Report by Production, Consumption, Import & Export, Regions, and Company Analysis 2024-2032; 2024. https://www.researchandmarkets.com
  5. 5. ICAC. World Cotton Statistics; 2025. https://icac.shinyapps.io/ICAC_Open_Data_Dashboaard
  6. 6. INDIASTAT. Export of raw cotton data; 2024. https://www.indiastat.com/data/foreign-trade/export-of-raw-cotton-cotton-yarn
  7. 7. Shu H, Sun S, Wang X, Chen J, Yang C, Zhang G, et al. Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in Gossypium hirsutum, increasing defoliation at low temperatures. Front Plant Sci. 2024;15. https://doi.org/10.3389/fpls.2024.1333816
  8. 8. Mishra PK, Sharma A, Prakash A. Current research and development in cotton harvesters: A review with application to Indian cotton production systems. Heliyon. 2023;9(5):e16124. https://doi.org/10.1016/j.heliyon.2023.e16124
  9. 9. Neupane J, Maja JM, Miller G, Marshall M, Cutulle M, Luo J. Effect of controlled defoliant application on cotton fiber quality. Appl Sci. 2023;13(9):5694. https://doi.org/10.3390/app13095694
  10. 10. Ma Y, Chen X, Huang C, Hou T, Lv X, Zhang Z. Monitoring defoliation rate and boll-opening rate of machine-harvested cotton based on UAV RGB images. Eur J Agron. 2023;151:126976. https://doi.org/10.1016/j.eja.2023.126976
  11. 11. Geetha A, Bhavya K, Saidaiah P. Influence of defoliants, dessicants and harvest-aid chemicals in determining cotton yield. In: Saidaiah P, editor. Advances in genetics and plant breeding. Delhi: AkiNik Publications; 2021. p. 83–102.
  12. 12. Li J, Su S. Abscission in plants: from mechanism to applications. Adv Biotechnol. 2024;2(3):27. https://doi.org/10.1007/s44307-024-00033-9
  13. 13. Patharkar OR, Walker JC. Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiol. 2016;172(1):510–20. https://doi.org/10.1104/pp.16.01004
  14. 14. Pan Z, Zhou X, Wang R, Li J, Ding S, Han P, et al. Genome-wide association screening and verification of potential genes associated with defoliation rate induced by defoliant in Gossypium hirsutum. Ind Crops Prod. 2024;217:118712. https://doi.org/10.1016/j.indcrop.2024.118712
  15. 15. Ma C, Jiang C, Gao J. Regulatory mechanisms underlying activation of organ abscission. Annu Plant Rev Online. 2021;4(1):27–56. https://doi.org/10.1002/9781119312994.apr0741
  16. 16. Sundaresan S, Philosoph-Hadas S, Riov J, Mugasimangalam R, Kuravadi NA, Kochanek B, et al. De novo transcriptome sequencing and development of abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission. Front Plant Sci. 2016;6:1258. https://doi.org/10.3389/fpls.2015.01258
  17. 17. Mishra A, Khare S, Trivedi PK, Nath P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South Afr J Bot. 2008;74(2):282–7. https://doi.org/10.1016/j.sajb.2007.12.001
  18. 18. Wang X, Wen H, Suprun A, Zhu H. Ethylene signaling in regulating plant growth, development, and stress responses. Plants. 2025;14(3):309. https://doi.org/10.3390/plants14030309
  19. 19. Nascimento MF, Santos RMC, Araújo FF, Silva JJ, Finger FL, Bruckner CH. Sensitivity of potted ornamental peppers to ethylene. Ornam Hortic. 2018;24(4):429–34. https://doi.org/10.14295/oh.v24i4.1458
  20. 20. Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, et al. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot. 2019;70(5):1525–38. https://doi.org/10.1093/jxb/erz036
  21. 21. Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, et al. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci. 2022;23(5):2696. https://doi.org/10.3390/ijms23052696
  22. 22. Meir S, Sundaresan S, Riov J, Agar`wal I, Philosoph-Hadas S. Role of auxin depletion in abscission control. Stewart Postharvest Rev. 2015;11(2):1–15. https://doi.org/10.2212/spr.2015.2.2
  23. 23. Perumal C, Subiramaniyan AS, Natarajan A, Arumugam R, Ramasamy A, Sivalingam R, et al. Dissecting the biochemical and hormonal changes of thidiazuron on defoliation of cotton CO17 (Gossypium hirsutum) to enhance mechanical harvest efficiency. J Appl Nat Sci. 2024;16(1):263-70. https://doi.org/10.31018/jans.v16i1.4860
  24. 24. Laila R, Robin AH, Park JI, Saha G, Kim HT, Kayum MA, et al. Expression and role of response regulating, biosynthetic and degrading genes for cytokinin signaling during clubroot disease development. Int J Mol Sci. 2020;21(11):3896. https://doi.org/10.3390/ijms21113896
  25. 25. Parwez R, Aftab T, Gill SS, Naeem M. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environ Exp Bot. 2022;199:104885. https://doi.org/10.1016/j.envexpbot.2022.104885
  26. 26. Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 2010;152(4):1940–50. https://doi.org/10.1104/pp.110.153114
  27. 27. Saniewski. Auxin effectively induces the formation of the secondary abscission zone in Bryophyllum calycinum Salisb. (Crassulaceae). Acta Agrobot. 2016;69(3). https://doi.org/10.5586/aa.1660
  28. 28. Chandrasekaran P, Ravichandran V, Sivakumar T, Senthil A. Use of defoliants for achieving improved productivity and quality of cotton: a review. Agric Rev. 2024;45(2):350–3. https://doi.org/10.18805/ag.R-2372
  29. 29. Ranney CD, Hursh JS, Newton OH. Effects of bottom defoliation on microclimate and the reduction of boll rot of cotton. Agron J. 1971;63(2):259–63. https://doi.org/10.2134/agronj1971.00021962006300020019x
  30. 30. Xie Z, Xie X, Qin Y, Yang D, Zhou Z, Wang Q, et al. Advances in cotton harvesting aids. Front Plant Sci. 2025;16. https://doi.org/10.3389/fpls.2025.1570251
  31. 31. Song X, Zhang L, Zhao W, Xu D, Eneji AE, Zhang X, et al. The relationship between boll retention and defoliation of cotton at the fruiting site level. Crop Sci. 2022;62(3):1333–47. https://doi.org/10.1002/csc2.20721
  32. 32. Zhang Q, Luo D, Sun Y, Li P, Xiang D, Zhang Y, et al. Cotton harvest aids promote the translocation of bur-stored photoassimilates to enhance single boll weight. Ind Crops Prod. 2023;195:116375. https://doi.org/10.1016/j.indcrop.2023.116375
  33. 33. Zhang Q, Sun Y, Luo D, Li P, Liu T, Xiang D, et al. Harvest aids applied at appropriate time could reduce the damage to cotton yield and fiber quality. Agronomy. 2023;13(3):664. https://doi.org/10.3390/agronomy13030664
  34. 34. Wright SD, Hutmacher RB, Shrestha A, Banuelos G, Rios S, Hutmacher K, et al. Impact of early defoliation on California Pima cotton boll opening, lint yield, and quality. J Crop Improv. 2015;29(5):528–41. https://doi.org/10.1080/15427528.2015.1056399
  35. 35. Rajasekar R, Ravichandran V, Senthil A, Subramanian A, Thirukumaran K, Jagadeeswaran R, et al. Thidiazuron as a defoliant to facilitate mechanical harvesting in cotton: A comprehensive review. Plant Sci Today. 2025;12(1). https://doi.org/10.14719/pst.4776
  36. 36. Chandrasekaran P, Ashok S, Ajaykumar R, Ashokkumar N, Sathya R, Karpagavalli S, et al. Application of defoliants alters leaf growth and gas exchange parameters for cotton defoliation. Plant Sci Today. 2023;10(4SE):105–14. https://doi.org/10.14719/pst.2383
  37. 37. Byrd S, Wilson B, Catlin C, Althoff A. 2021 Oklahoma cotton harvest aid guide. Dissertation; 2021.
  38. 38. Ashraf AM, Begam SN, Ragavan T. Defoliants harvest-aid chemicals: cost effective technology to facilitate synchronized maturity for mechanical harvesting in cotton: A review. Agric Rev. 2023;44(3):320–7. https://doi.org/10.18805/ag.R-2081
  39. 39. Ashraf AM, Ragavan T, Begam SN. Chapter-2 Defoliants harvest-aid chemicals: cost effective technology to facilitate synchronized maturity for mechanical harvesting in cotton. In: Naresh RK, editor. Advances in agriculture sciences. Vol. 27. AkiNik Publications; 2020. p. 15-34. https://doi.org/10.22271/ed.book.920
  40. 40. Catlin CB. Cotton harvest aid efficacy and cotton fiber quality as influenced by application timing. Dissertations. Oklahoma State University; 2021.
  41. 41. Beyyavaş V. The effect of different harvest aiding chemicals on yield and yield components of cotton (Gossypium hirsutum L.). Appl Ecol Environ Res. 2019;17(2):2733–43. http://doi.org/10.15666/aeer/1702_27332743
  42. 42. Yu K, Li K, Wang J, Gong Z, Liang Y, Yang M, et al. Optimizing the proportion of thidiazuron and ethephon compounds to improve the efficacy of cotton harvest aids. Ind Crops Prod. 2023;191:115949. https://doi.org/10.1016/j.indcrop.2022.115949
  43. 43. Chen Y, Evers JB, Yang M, Wang X, Zhang Z, Sun S, et al. Cotton crop transpiration reveals opportunities to reduce yield loss when applying defoliants for efficient mechanical harvesting. F Crop Res. 2024;309:109304. https://doi.org/10.1016/j.fcr.2024.109304
  44. 44. Shu H, Sun S, Wang X, Yang C, Zhang G, Meng Y, et al. Low temperature inhibits the defoliation efficiency of thidiazuron in cotton by regulating plant hormone synthesis and the signaling pathway. Int J Mol Sci. 2022;23(22):14208. https://doi.org/10.3390/ijms232214208
  45. 45. Li H, Wang X, Qin N, Hu D, Jia Y, Sun G, et al. Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.). J Adv Res. 2024;58:31–43. https://doi.org/10.1016/j.jare.2023.05.007
  46. 46. Darawsheh MK, Beslemes D, Kouneli V, Tigka E, Bilalis D, Roussis I, et al. Environmental and regional effects on fiber quality of cotton cultivated in Greece. Agronomy. 2022;12:943. https://doi.org/10.3390/agronomy12040943
  47. 47. Naveed S, Jones M, Campbell BT, Rustgi S. Insights into cotton regrowth and management. Clemson (SC): Clemson University Cooperative Extension, Land-Grant Press by Clemson Extension; 2024. LGP 1195.
  48. 48. Hongoeb J, Tantimongcolwat T, Ayimbila F, Ruankham W, Phopin K. Herbicide-related health risks: key mechanisms and a guide to mitigation strategies. J Occup Med Toxicol. 2025;20(1):6. https://doi.org/10.1186/s12995-025-00448-7
  49. 49. Faircloth JC, Edmisten KL, Wells R, Stewart AM. The influence of defoliation timing on yields and quality of two cotton cultivars. Crop Sci. 2004;44(1):165–72. https://doi.org/10.2135/cropsci2004.1650
  50. 50. Emine K, Cetin K, Sema B. Determination the effect of defoliation timing on cotton yield and quality. J Cent Eur Agric. 2007;8(3):357–62.
  51. 51. Ashraf AAM, Ragavan T, Begam SN. Standardize the dose and timing of defoliant application to facilitate synchronized maturity for mechanical harvesting of rainfed cotton (Gossypium hirsutum). Indian J Agron. 2020;65(4):444–50. https://doi.org/10.59797/ija.v65i4.3008
  52. 52. Haliloğlu H, Cevheri Cİ, Beyyavaş V. The effect of defoliant application on yield and yield components of some cotton (Gossypium hirsutum L.) cultivars at timely and late sowing. Int J Agric Environ Food Sci. 2020;4(2):157–64. https://doi.org/10.31015/jaefs.2020.2.5
  53. 53. Singh K, Rathore P. Effect of different defoliants and their rate and time of application on American cotton cultivars under semi-arid conditions of north-western India. Res Crop. 2015;16(2):258–63. https://doi.org/10.5958/2348-7542.2015.00038.8
  54. 54. Zhang X, Tian J, Yang Y, Sui L, Zhang P, Zhang W. Response of cotton single boll damage to defoliation and boll stage in northern Xinjiang cotton region. Xinjiang Agric Sci. 2018;55(7):1186.
  55. 55. Xin F, Zhao J, Zhou Y, Wang G, Han X, Fu W, et al. Effects of dosage and spraying volume on cotton defoliants efficacy: a case study based on application of unmanned aerial vehicles. Agronomy. 2018;8(6):85. https://doi.org/10.3390/agronomy8060085
  56. 56. Cavalaris C, Karamoutis C, Markinos A. Efficacy of cotton harvest aids applications with unmanned aerial vehicles (UAV) and ground-based field sprayers – A case study comparison. Smart Agric Technol. 2022;2:100047. https://doi.org/10.1016/j.atech.2022.100047
  57. 57. Xiao Q, Xin F, Lou Z, Zhou T, Wang G, Han X, et al. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles. Agronomy. 2019;9(5):217. https://doi.org/10.3390/agronomy9050217
  58. 58. Sharma V, Vaddevolu UBP, Bhambota S, Ampatzidis Y, Bayabil H, Singh A. Variable rate technology and its application in precision agriculture: AE607, 1/2025. EDIS. 2025;2025(1). https://doi.org/10.32473/edis-ae607-2025
  59. 59. Zhang L, Sun B, Zhao D, Shan C, Wang G, Song C, et al. Prediction of cotton FPAR and construction of defoliation spraying prescription map based on multi-source UAV images. Comput Electron Agric. 2024;220:108897. https://doi.org/10.1016/j.compag.2024.108897
  60. 60. Sanders JC, Reynolds DB, O’Hara CG, Barber LT. Site-specific herbicide, growth regulator, and defoliant applications in cotton. In: Beltwide Cotton Conferences. National Cotton Council; 2003. p. 213–21.
  61. 61. Sun B, Chen L, Liu J, Zhang X, Yang Z, Liu W, et al. TAA family contributes to auxin production during de novo regeneration of adventitious roots from Arabidopsis leaf explants. Sci Bull. 2016;61(22):1728–31. https://doi.org/10.1007/s11434-016-1185-9
  62. 62. Gao Y, Liu Y, Liang Y, Lu J, Jiang C, Fei Z, et al. Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. Plant J. 2019;99(6):1159–71. https://doi.org/10.1111/tpj.14412
  63. 63. Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. The acceleration of yellow lupine flower abscission by jasmonates is accompanied by lipid-related events in abscission zone cells. Plant Sci. 2022;316:111173. https://doi.org/10.1016/j.plantsci.2021.111173
  64. 64. Kućko A, Florkiewicz AB, Wolska M, Miętki J, Kapusta M, Domagalski K, et al. Jasmonate-dependent response of the flower abscission zone cells to drought in yellow lupine. Plants. 2022;11(4):527. https://doi.org/10.3390/plants11040527
  65. 65. Wang J, Zhang Z, Zhang N, Liang Y, Gong Z, Wang J, et al. The correlation of machine-picked cotton defoliant in different Gossypium hirsutum varieties. Agronomy. 2023;13(8):2151. https://doi.org/10.3390/agronomy13082151
  66. 66. Wang L, Deng Y, Kong F, Duan B, Saeed M, Xin M, et al. Evaluating the effects of defoliant spraying time on fibre yield and quality of different cotton cultivars. J Agric Sci. 2023;161(2):205–16. https://doi.org/10.1017/S0021859623000151
  67. 67. Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214. https://doi.org/10.1016/j.molp.2020.01.008
  68. 68. Bongomin O, Lamo J, Guina JM, Okello C, Ocen GG, Obura M, et al. UAV image acquisition and processing for high-throughput phenotyping in agricultural research and breeding programs. Plant Phenome J. 2024;7(1):e20096. https://doi.org/10.1002/ppj2.20096
  69. 69. Xu R, Li C, Mohammadpour Velni J. Development of an autonomous ground robot for field high throughput phenotyping. IFAC. 2018;51(17):70–4. https://doi.org/10.1016/j.ifacol.2018.08.063
  70. 70. Xu R, Li C, Paterson AH. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS One. 2019;14(2):e0205083. https://doi.org/10.1371/journal.pone.0205083
  71. 71. Xu R, Li C, Paterson AH, Jiang Y, Sun S, Robertson JS. Aerial images and convolutional neural network for cotton bloom detection. Front Plant Sci. 2018;8:2235. https://doi.org/10.3389/fpls.2017.02235
  72. 72. Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J. Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot. 2005;56(417):1843–52. https://doi.org/10.1093/jxb/eri174
  73. 73. Chandrasekaran P, Ravichandran V, Senthil A, Mahalingam L, Sakthivel N. Effect of different defoliants and time of application on defoliation percentage and boll opening percentage in high density cotton (Gossypium hirsutum L.). Int J Plant Soil Sci. 2020;32:37–45. https://doi.org/10.9734/IJPSS/2020/v32i1030337
  74. 74. Liao B, Li F, Yi F, Du M, Tian X, Li Z. Comparative physiological and transcriptomic mechanisms of defoliation in cotton in response to thidiazuron versus ethephon. Int J Mol Sci. 2023;24(8):7590. https://doi.org/10.3390/ijms24087590
  75. 75. Lombardi L, Arrom L, Mariotti L, Battelli R, Picciarelli P, Kille P, et al. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies. J Exp Bot. 2015;66(3):945–56. https://doi.org/10.1093/jxb/eru451
  76. 76. Bai F, Scheffler J. Genetic and molecular regulation of cotton fiber initiation and elongation. Agronomy. 2024;14(6):1208. https://doi.org/10.3390/agronomy14061208
  77. 77. Mehari TG, Hou Y, Xu Y, Umer MJ, Shiraku ML, Wang Y, et al. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis. BMC Genomics. 2022;23(1):648. https://doi.org/10.1186/s12864-022-08876-z
  78. 78. Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, et al. Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics. 2014;289(6):1103–21. https://doi.org/10.1007/s00438-014-0872-y
  79. 79. Ullah A, Ul Qamar MT, Nisar M, Hazrat A, Rahim G, Khan AH, et al. Characterization of a novel cotton MYB gene, GhMYB108-like responsive to abiotic stresses. Mol Biol Rep. 2020;47(3):1573–81. https://doi.org/10.1007/s11033-020-05244-6
  80. 80. Zhang J, Gao Y, Feng M, Cui Y, Li S, Liu L, et al. Genome-wide identification of the HD-ZIP III subfamily in upland cotton reveals the involvement of GhHB8-5D in the biosynthesis of secondary wall in fiber and drought resistance. Front Plant Sci. 2021;12:806195. https://doi.org/10.3389/fpls.2021.806195
  81. 81. Hu W, Li X, Zhang X, Yang Y, Li B, Li X. Expression of GhCAD6 gene in cotton fiber and the effect on structural components. Acta Bot Boreali-Occidentalia Sin. 2019;39(6):1114–20.
  82. 82. Du M, Li Y, Tian X, Duan L, Zhang M, Tan W, et al. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One. 2014;9(5):e97652. https://doi.org/10.1371/journal.pone.0097652
  83. 83. Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, et al. Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.). Front Plant Sci. 2021;12:779386. https://doi.org/10.3389/fpls.2021.779386
  84. 84. Byrd SA. Quantifying potential production risks of technologies nearing commercialization, management practices for cotton irrigation, and leaf pubescence and defoliation strategy influence on cotton defoliation and fiber quality. Dissertation. University of Georgia; 2015.
  85. 85. Gwathmey C, Craig Jr C. Defoliants for cotton. Encycl Pest Manag. 2007;2:135–7. https://doi.org/10.1201/9781420068467.ch34
  86. 86. Kelley M, Boman R, Lemon RG, Pigg J. Performance of Blizzard as a cotton harvest aid in Texas. Beltwide Cotton Conferences; 2007. p. 1757.
  87. 87. Wang S, Sun H, Zhu L, Zhang K, Zhang Y, Zhang H, et al. Effects of spraying with ethephon and early topping on the growth, yield, and earliness of cotton under late-sowing and high-density cultivation modes. Agronomy. 2023;13(5):1244. https://doi.org/10.3390/agronomy13051244
  88. 88. Inoue MH, da Costa FF, Mendes KF, Beatriz T. Prohexadione-calcium isolated or in association with herbicides and other products in the handling of cotton pre-harvest. Rev Bras Herbic. 2015;14(1):21–9. https://doi.org/10.7824/rbh.v14i1.392
  89. 89. Gutierrez M, Norton R, Thorp KR, Wang G. Association of spectral reflectance indices with plant growth and lint yield in upland cotton. Crop Sci. 2012;52(2):849–57. https://doi.org/10.2135/cropsci2011.04.0222
  90. 90. Griffin JL, Boudreaux JM, Miller DK. Herbicides as harvest aids. Weed Sci. 2010;58(3):355–8. https://doi.org/10.1614/WS-09-108.1
  91. 91. Santos EG dos, Inoue MH, Mendes KF, Ben R, Cavalcante NR, de Oliveira JS. Efficiency of saflufenacil applied as defoliant in the pre-harvest of cotton. 2014;57(2):124-9. https://doi.org/10.4322/rca.2014.005
  92. 92. Logan J, Gwathmey CO. Effects of weather on cotton responses to harvest-aid chemicals. J Cott Sci. 2002;6(1):1–12.
  93. 93. Li S, Gao J, Yao L, Ren G, Zhu X, Gao S, et al. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence. Plant Cell Rep. 2016;35:1729–41. https://doi.org/10.1007/s00299-016-1991-1

Downloads

Download data is not yet available.