Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Genetic divergence and principal component analysis for yield and yield components of pigeon pea [Cajanus cajan (L.) Millsp.] germplasm

DOI
https://doi.org/10.14719/pst.9079
Submitted
25 April 2025
Published
11-09-2025 — Updated on 06-10-2025
Versions

Abstract

Pigeon pea is an important leguminous crop widely cultivated in tropical and subtropical regions for its protein-rich seeds and soil-enriching properties. The present investigation was conducted in an augmented block design during Kharif 2020 at the Research Farm of Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India. The experimental material consisted of 73 genotypes of pigeon pea, including three checks, NDA-1, Bahar and Pant Arhar-291 to examine genetic diversity among these genotypes. Analysis of variance revealed significant genotypic variation for most of the traits among the genotypes, suggesting that the variation may be exploited through selection for the development of a variety with high-yield genetic potential. Cluster analysis grouped the genotypes into five distinct, non-overlapping clusters. Cluster I contained the highest number of genotypes (25), followed by Cluster III (19), Cluster II (14), Cluster V (9) and Cluster IV (6). Clusters II and IV had the greatest inter-cluster distance, which indicated that crossing genotypes between these clusters would result in high-quality recombinants. Principal component analysis (PCA) extracted five components that contributed 67.89 % variance to the total variation among the tested genotypes. The genotypes which showed the highest genetic diversity can be used as a parent in a hybridization program. Early flowering was observed with the genotypes IPA-10W-8-1 (74.09 days), IPA-12W-16 (78.09 days) and genotypes IPA-12W-3 (202.37 g), IPAB-10-13 (199.70 g), IPA-17W-218 (195.72 g), IPA-12W-38 (192.80 g), Local-4 (191.83 g), IPA-10W-5-8 (190.83 g) had the highest seed yield per plant. These germplasm lines can be used as potential parents for the development of high-yielding and early maturing cultivars.

References

  1. 1. Saxena K, Bohra A, Choudhary AK, Sultana R, Sharma M, Pazhamala LT, et al. The alternative breeding approaches for improving yield gains and stress response in pigeon pea (Cajanus cajan). Plant Breed. 2021;140(1):74-86. https://doi.org/10.1111/pbr.12863
  2. 2. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, et al. Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource poor farmers. Nat Biotechnol. 2012;30(1):83-9. https://doi.org/10.1038/nbt.2022
  3. 3. FAO Corporate Statistical Database (FAOSTAT); 2022. https://www.fao.org/faostat/en/#data
  4. 4. Géofroy K, Gustave D, Laura EYL, Relique IA, Saxena RK, Varshney RK, et al. Agro morphological characterization of pigeon pea (Cajanus cajan L. Millspaugh) landraces grown in Benin: implications for breeding and conservation. J Plant Breed Crop Sci. 2020;12(1):34-49. https://doi.org/10.5897/JPBCS2019.0836
  5. 5. Yohane EN, Shimelis H, Laing M, Mathew I, Shayanowako A. Genotype by environment interaction and stability analyses of grain yield in pigeon pea (Cajanus cajan L. Millspaugh). Acta Agri Scand B Soil Plant Sci. 2021;71(3):145-55. https://doi.org/10.1080/09064710.2020.1859608
  6. 6. Hossain MM, Azad MAK, Eaton TEJ, Siddquie MNA. Assessment of different traits to evaluate genetic divergence in some wheat (Triticum aestivum L.) genotypes under late sowing conditions. Am J Plant Sci. 2021;12(5):734-47. https://doi.org/10.4236/ajps.2021.125050
  7. 7. Singh NK, Mishra SN. Genetic divergence in oat germplasm. Indian J Genet. 1996;56(3):272-7.
  8. 8. Sujit MK, Belsariya N, Pandey VK. Studies on genetic diversity for yield and yield attributing traits in pigeon pea (Cajanus cajan L. Millsp) germplasm. Pharm Innov. 2023;12(3):5272-7.
  9. 9. Upadhyaya HD. Germplasm management for enhanced genetic gains. IJPGR. 2016;29(3):261-4. https://doi.org/10.5958/0976-1926.2016.00041.3
  10. 10. de Souza, Cargnelutti Filho A, Toebe M, Bittencourt KC. Sample size and genetic divergence: a principal component analysis for soybean traits. Eur J Agron. 2023;149:126903. https://doi.org/10.1016/j.eja.2023.126903
  11. 11. Hemavathy AT, Bapu JR, Priyadharshini C. Principal component analysis in pigeon pea (Cajanus cajan L. millsp.). Electron J Plant Breed. 2017;8(4):1133-9. https://doi.org/10.5958/0975-928X.2017.00165.X
  12. 12. Mahalanobis PC. On the generalized distance in statistics. Proc Nat Ins India. 1936;2:49-55.
  13. 13. Rao CR. Advanced statistical methods in biometrical research. 1st edition. New York: John Wiley and Sons; 1952. p. 236-72.
  14. 14. Saxena KB, Sawargaonkar SL. First information on heterotic groups in pigeon pea (Cajanus cajan L. Millsp.). Euphytica. 2014;200:187-96. https://doi.org/10.1007/s10681-014-1142-0
  15. 15. Khan SA, Iqbal J, Khurshid H, Saleem N, Rabbani MA, Zia M, et al. The extent of intra specific genetic divergence in the Brassica napus L. population was estimated through various agro morphological traits. Eur J Acad Res. 2014;2:2255-75. https://doi.org/10.14419/ijbas.v3i2.2336
  16. 16. Syafii M, Cartika I, Ruswandi D. Multivariate analysis of genetic diversity among some maize genotypes under maize albizia cropping system in Indonesia. Asian J Crop Sci. 2015;7:244-55. https://doi.org/10.3923/ajcs.2015.244.255
  17. 17. Mofokeng MA, Bello Z, Mashingaidze K, Gerrano AS. Morphological plasticity of economical traits in pigeon pea genotypes grown in South Africa. Intl J Agric Biol. 2022;28(2):75-84.
  18. 18. Mohammed A, Tesso B, Ojiewo C, Ahmed S. Assessment of genetic variability and heritability of agronomic traits in Ethiopian chickpea (Cicer arietinum L) landraces. BSJ Agri. 2019;2:10-5.
  19. 19. Zavinon F, Adoukonou Sagbadja H, Bossikponnon A, Dossa H, Ahanhanzo C. Phenotypic diversity for agro morphological traits in pigeon pea landraces (Cajanus cajan L. Millsp.) cultivated in southern Benin. Open Ag. 2019;4(1):487-99. https://doi.org/10.1515/opag-2019-0046
  20. 20. Chauhan N, Singh I, Kumar H, Vij S. Evaluation of genetic diversity of advanced pigeonpea (Cajanus cajan L. Millspaugh) interspecific derivatives using Mahalanobis D² and selection of elite lines using multi trait genotype ideotype distance index. Int J Bio Resour Stress Manag. 2025;16(1). https://doi.org/10.23910/1.2025.5916
  21. 21. Mauriya AK, Kumar V, Verma RB, Sahu R, Hashim M. Impact of cluster frontline demonstration on increasing productivity and profitability of pigeonpea in Bihar. J Food Legumes. 2024;37(2):211-4. https://doi.org/10.59797/jfl.v37.i2.197
  22. 22. Kumar A, Kumar H, Singh CM, Kumar M, Sharma V, Kumar S, et al. Multivariate analysis for elucidating genetic diversity of chickpea (Cicer arietinum L.) germplasm using agro morphological traits. Legume Res. 2025;48(4):590-6. https://doi.org/10.18805/LR-4956
  23. 23. Choudhary M, Gothwal DK, Kumawat KR, Kumawat R, Kumar O, Bajya M. Cluster and principal component analysis in fenugreek (Trigonella foenum graecum L.) genotypes based on yield and yield related traits. Pharma Innov J. 2022;11(5):1723-8.
  24. 24. Alemayo GT, Gurmu GN, Singh BCS, Getachew ZE. Genetic variability of chickpea (Cicer arietinum L.) genotypes for yield and yield components in West Shewa, Ethiopia. Plant Cell Biotechnol Mol Biol. 2021;22(35 36):307-31.
  25. 25. Kumar K, Anjoy P, Sahu S, Durgesh K, Das A, Tribhuvan KU, et al. Single trait versus principal component based association analysis for flowering related traits in pigeon pea. Sci Rep. 2022;12(1):10453. https://doi.org/10.1038/s41598-022-14192-7
  26. 26. Kumar A, Kumar H, Sharma V, Kamaluddin. Estimation of genetic parameters, selection indices, and association analysis of seed yield and its component traits in chickpea (Cicer arietinum L.). Legume Res. 2021;47(3):1-9. https://doi.org/10.18805/LR-4506
  27. 27. Talekar SC, Praveena MV, Satish RG. Genetic diversity using principal component analysis and hierarchical cluster analysis in rice. Int J Plant Sci. 2022;17(2):191-6. https://doi.org/10.15740/HAS/IJPS/17.2/191-196
  28. 28. Rao PJM, Malathi S, Reddy DVV, Upender M. Genetic studies of association and path coefficient analysis of yield and its component traits in pigeon pea (Cajanus cajan L. Millsp.). Int J Sci Res Publ 2013;3(8):1-5.
  29. 29. Devi M, Jyothulal DPB, Krishnaveni B, Rao VS. Genetic divergence studies in rice (Oryza sativa L.) hybrids for yield, yield component traits and quality parameters. Int J Curr Microbiol Appl Sci. 2019;8(6):1577-83. https://doi.org/10.20546/ijcmas.2019.806.189
  30. 30. Rekha R, Prasanthi L, Sekhar MR, Priya MS. Variability, character association and path analysis for yield and yield attributes in pigeon pea. Electron J Plant Breed. 2013;4(4):1331-5.
  31. 31. Gaur AK, Verma SK, Sharma RK, Bhardwaj R, Bisht C, Deep H, et al. Elucidation of genetic mechanism governing heterosis in pigeonpea (Cajanus cajan L. Millspaugh). Legume Res. 2025;1:6.
  32. 32. Satapathy B, Panigrahi KK. Assessment of genetic divergence in pigeon pea (Cajanus cajan L.). Trends Biosci. 2014;7(19):3001-5.
  33. 33. Bhatt A, Verma SK, Panwar RK, Reddy SK. Assessment of crop genetic diversity utilizing multivariate analysis in pigeonpea (Cajanus cajan L. Millsp.) genotypes. Legume Res. 2024;1:8. https://doi.org/10.18805/LR-5375
  34. 34. Reddy VG, Jayalakshmi V, Sreenivas T. Genetic divergence studies in pigeon pea inbreeds. Electron J Plant Breed 2015;6(2):515-20.
  35. 35. Morrison DE. Multivariate statistical methods. 2nd edition. 4th print. Tokyo: McGraw Hill Kogakusha Ltd; 1978. p. 1-85.
  36. 36. Vianna VF, Unêda Trevisoli SH, Desidério JA, Santiago SD, Charnai K, Ferreira Júnior JA. The multivariate approach and influence of characters in selecting superior soybean genotypes. Afr J Agric Res. 2013;8(30):4162-9.
  37. 37. Li X, Zhang C, Behrens H, Holtz F. Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos. 2020;362:105469. https://doi.org/10.1016/j.lithos.2020.105469
  38. 38. Anderson TW. An introduction to multivariate analysis. New Delhi: Wiley Eastern Pvt. Ltd; 1972.
  39. 39. Alagu Palamuthirsolai M, Vijayabharathi A. Genetic diversity analysis of pigeon pea (Cajanus cajan L. Millsp.) under cold stress conditions. J Pharmacogn Phytochem. 2020;9(3):2048-53. https://doi.org/10.22271/phyto.2020.v9.i3ah.11615
  40. 40. Zavinon F, Adoukonou Sagbadja H, Bossikponnon A, Dossa H, Ahanhanzo C. Phenotypic diversity for agro morphological traits in pigeon pea landraces (Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agric. 2019;4(1):487-99. https://doi.org/10.1515/opag-2019-0046
  41. 41. Kumara BN, Santoshagowda GB, Nishanth GK, Dharma Raj PS. Genetic diversity, variability, and correlation studies in advanced genotypes of pigeon pea (Cajanus cajan L. Millsp.) Genotypes. Acta Biol Indica. 2013;2(2):406-11.
  42. 42. Alam MS, Hossain S, Ali MA, Hossain MG, Islam MF. Assessment of genetic divergence in tomato (Solanum lycopersicum L.) through clustering and principal component analysis. J Agric Sci Eng Innov. 2020;1(1):10-4. https://doi.org/10.5281/zenodo.3965945

Downloads

Download data is not yet available.