Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Seed biopriming: A promising strategy to tackle abiotic stress in plants

DOI
https://doi.org/10.14719/pst.9581
Submitted
23 May 2025
Published
07-10-2025

Abstract

Abiotic stresses such as drought, salinity, high temperatures and heavy metal toxicity significantly reduce crop yield and threaten global food security. Seed biopriming is an eco-friendly and sustainable pre-sowing strategy that enhances plant resilience to these environmental challenges. It involves the use of beneficial microorganisms to colonize seeds, triggering physiological, biochemical and molecular adaptations. Biopriming enhances seed germination, seedling vigour, root architecture and improves nutrient uptake by activating stress-responsive signalling pathways, antioxidant defence mechanisms, accumulation of osmolytes and production of secondary metabolites and plant hormones such as cytokinins and indole-3-acetic acid (IAA). Additionally, it promotes systemic resistance, leading to improved growth of plants and survival under adverse conditions. Compared to other priming methods, biopriming offers long- term benefits by establishing beneficial microbial associations that support plant health throughout the growth cycle. This review highlights the microbial agents used for biopriming, mechanism of action, benefits and current research trends of seed biopriming as a sustainable approach to mitigate abiotic stress in agriculture. Understanding and optimizing this approach can significantly contribute to sustainable agricultural practices by reducing reliance on chemical inputs, thereby preventing environmental hazards, ensuring food safety and mitigating the effects of climate change.

References

  1. 1. Rai KK. Integrating speed breeding with artificial intelligence for developing climate-smart crops. Mol Biol Rep. 2022;49(12):11385-402. https://doi.org/10.1007/s11033-022-07769-4
  2. 2. Khan N, Ali S, Shahid MA, Mustafa A, Sayyed R, Curá JA. Insights into the interactions among roots, rhizosphere and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cell J. 2021;10(6):1551. https://doi.org/10.3390/cells10061551
  3. 3. Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A. Rice in saline soils: Physiology, biochemistry, genetics and management. Adv Agron. 2017;20(1). https://doi.org/10.1016/BS.AGRON.2017.11.002
  4. 4. Edmondson JL, Davies ZG, Gaston KJ, Leake JR. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. J Appl Ecol. 2014;51(4):880-89. https://doi.org/10.1111/1365-2664.12254
  5. 5. Chakraborti S, Bera K, Sadhukhan S, Dutta P. Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. J Plant Stress Physiol. 2022;3:100052. https://doi.org/10.1016/j.stress.2021.100052
  6. 6. Sarkar A, Pramanik K, Mitra S, Soren T, Maiti TK. Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol. 2018;231:434-42. https://doi.org/10.1016/j.jplph.2018.10.010
  7. 7. Singh U, Praharaj C, Shivay Y, Kumar L, Singh S. Ferti-fortification: an agronomic approach for micronutrient enrichment of pulses. Pulses: challenges and opportunities under changing climatic scenario. In: Proceedings of the national conference on “Pulses: challenges and opportunities under changing climatic scenario. 2015;29:208–22.
  8. 8. Zampieri E, Franchi E, Giovannini L, Brescia F, Sillo F, Fusini D, et al. Diverse plant promoting bacterial species differentially improve tomato plant fitness under water stress. Front Plant Sci. 2023;14:1297090. https://doi.org/10.3389/fpls.2023.1297090
  9. 9. Liu Y, Li P, Xu GC, Xiao L, Ren ZP, Li ZB. Growth, morphological and physiological responses to drought stress in Bothriochloa ischaemum. Front Plant Sci. 2017;8:230. https://doi.org/10.3389/fpls.2017.00230
  10. 10. FAO. 2024.
  11. 11. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc; 2014.
  12. 12. Buvaneshwari S, Riotte J, Sekhar M, Sharma AK, Helliwell R, Kumar MM, et al. Potash fertilizer promotes incipient salinization in groundwater irrigated semi-arid agriculture. Sci Rep. 2020;10(1):3691. https://doi.org/10.1038/s41598-020-60365-z
  13. 13. Morcillo RJ, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites. 2021;11(6):337. https://doi.org/10.3390/metabo11060337
  14. 14. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  15. 15. Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31-38. https://doi.org/10.1111/plb.12884
  16. 16. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 2016;184:13-24. https://doi.org/10.1016/j.micres.2015.12.003
  17. 17. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM. Plant drought stress: effects, mechanisms and management. J Sustain Agric 2009:153-88. https://doi.org/10.1007/978-90-481-2666-8_12
  18. 18. Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, et al. From the floret to the canopy: High temperature tolerance during flowering. Plant Commun. 2023;4(6). https://doi.org/10.1016/j.xplc.2023.100629
  19. 19. Ali B, Gill RA. Heavy metal toxicity in plants: Recent insights on physiological and molecular aspects, volume II. Front Plant Sci. 2022;13:1016257. https://doi.org/10.3389/fpls.2022.1016257
  20. 20. Gill M. Heavy metal stress in plants: a review. Int J Adv Res. 2014;2(6):1043-55.
  21. 21. Feng D, Wang R, Sun X, Liu Ln, Liu P, Tang J, et al. Heavy metal stress in plants: Ways to alleviate with exogenous substances. Sci Total Environ. 2023;897:165397. https://doi.org/10.1016/j.scitotenv.2023.165397
  22. 22. Omari AF. Metabolic engineering of osmoprotectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta. 2021;253(1):24. https://doi.org/10.1007/s00425-020-03550-8
  23. 23. Rhaman MS, Rauf F, Tania SS, Khatun M. Seed priming methods: Application in field crops and future perspectives. Asian J Res Crop Sci. 2020;5(2):8-19. https://doi.org/10.9734/ajrcs/2020/v5i230091
  24. 24. Biswas S, Seal P, Majumder B, Biswas AK. Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress. 2023;9:100186. https://doi.org/10.1016/j.stress.2023.100186
  25. 25. Amir M, Prasad D, Khan FA, Khan A, Ahmad B. Seed priming: An overview of techniques, mechanisms and applications. Plant Sci Today. 2024;11(1):553-63. https://doi.org/10.14719/pst.2024.11.1
  26. 26. Arun MN, Hebbar SS, Senthivel T, Nair AK, Padmavathi G, Pandey P, Singh A. Seed priming: The way forward to mitigate abiotic stress in crops: Intech Open London, UK; 2022.
  27. 27. Callan NW, Mathre D, Miller JB. Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Dis. 1990;74(5):368–72. https://doi.org/10.1094/PD-74-0368
  28. 28. Cardarelli M, Woo SL, Rouphael Y, Colla G. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants. 2022;11(3):259. https://doi.org/10.3390/plants11030259
  29. 29. Al Hijab LY, Al-Hazmi NE, Naguib DM. Rhizobacteria-priming improves common bean seeds germination under different abiotic stresses through improving hydrolysis and antioxidant enzymes kinetics parameters. Rhizosphere. 2024;29:100842. https://doi.org/10.1016/j.rhisph.2023.100842
  30. 30. Shehab GG, Ahmed OK, El-Beltagi HS. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not Bot Horti Agrobot Cluj-Napoca. 2010;38(1):139-48.
  31. 31. Ella ES, Dionisio-Sese ML, Ismail AM. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants. 2011;plr007. https://doi.org/10.1093/aobpla/plr007
  32. 32. Adhikary S, Naskar MK, Biswas B. Seed priming-one small step for farmer, one giant leap for food security: I application and exploration. J Pharmacogn Phytochem. 2021;10(1):409-12. https://doi.org/10.22271/phyto.2021.v10.i1h.13370
  33. 33. Fiodor A, Ajijah N, Dziewit L, Pranaw K. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Front Microbiol. 2023;14:1142966. https://doi.org/10.3389/fmicb.2023.1142966
  34. 34. Reddy PP, Reddy PP. Bio-priming of seeds. Recent Adv Crop Prot. 2013:83-90. https://doi.org/10.1007/978-81-322-0723-8_6
  35. 35. Müller H, Berg G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl. 2008;53:905-16. https://doi.org/10.1007/s10526-007-9111-3
  36. 36. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC. Perspectives and challenges of microbial application for crop improvement. Front Plant Sci. 2017;8:49. https://doi.org/10.3389/fpls.2017.00049
  37. 37. Raj SN, Shetty N, Shetty H. Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag. 2004;50(1):41-48. https://doi.org/10.1080/09670870310001626365
  38. 38. Deshmukh AJ, Jaiman R, Bambharolia R, Patil VA. Seed biopriming-a review. Int J Economic Plants. 2020;7(1):38-43. https://doi.org/10.23910/2/2020.0359
  39. 39. Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM. The wild side of plant microbiomes. Microbiome. 2018;6:1-6. https://doi.org/10.1186/s40168-018-0519-z
  40. 40. Genitsaris S, Stefanidou N, Leontidou K, Matsi T, Karamanoli K, Mellidou I. Bacterial communities in the rhizosphere and phyllosphere of halophytes and drought-tolerant plants in mediterranean ecosystems. Microorganisms. 2020;8(11):1708. https://doi.org/10.3390/microorganisms8111708
  41. 41. Chitra P, Jijeesh C. Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood. New Forests. 2021;52(5):829-41. https://doi.org/10.1007/s11056-020-09823-0
  42. 42. Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA. Seed biopriming with P-and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PloS One. 2020;15(7):e0232860. https://doi.org/10.1371/journal.pone.0232860
  43. 43. Bidabadi SS, Mehralian M. Seed bio-priming to improve germination, seedling growth and essential oil yield of Dracocephalum kotschyi Boiss, an endangered medicinal plant in Iran. Gesunde Pflanzen. 2020;72(1):17-27. https://doi.org/10.1007/s10343-019-00478-2
  44. 44. Panneerselvam P, Senapati A, Kumar U, Sharma L, Lepcha P, Prabhukarthikeyan S, et al. Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech. 2019;9:1-12. https://doi.org/10.1007/s13205-019-1938-7
  45. 45. Li H, Yue H, Li L, Liu Y, Zhang H, Wang J, Jiang X. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express. 2021;11(1):74. https://doi.org/10.1186/s13568-021-01237-1
  46. 46. Gowthamy U, Selvaraju P, Hemalatha G. Standardization of seed biopriming with liquid biofertilizers on nnake gourd (Trichosanthes cucumerina). Int J Curr Microbiol Appl Sci. 2017;6(12):2513-24. https://doi.org/10.20546/ijcmas.2017.612.292
  47. 47. Mitra D, Mondal R, Khoshru B, Shadangi S, Mohapatra PKD, Panneerselvam P. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Curr Res Microb Sci. 2021;2:100071. https://doi.org/10.1016/j.crmicr.2021.100071
  48. 48. Choudhary M, Patel B, Patel M, Choudhary N, Bagatharia S, Verma RK, et al. Enhancing soybean growth under drought stress through bio-priming with desert endophyte Priestua endophytica strain RAE-11. Symbiosis. 2025:1-13. https://doi.org/10.1007/s13199-025-01047-0
  49. 49. Shaffique S, Imran M, Injamum-Ul-Hoque M, Zainurin N, Peter O, Alomrani SO, Lee IJ. Unraveling the new member Bacillus pumilus SH-9 of Bacillaceae family and its potential role in seed biopriming to mitigate drought stress in Oryza sativa. J Plant Stress Physiol. 2024;11:100318. https://doi.org/10.1016/j.stress.2023.100318
  50. 50. Rani S, Kumar P, Dahiya P, Gupta A, Arora K, Dang AS, Suneja P. Effect of biopriming and nanopriming on physio-biochemical characteristics of Cicer arietinum L. under drought stress. J Plant Stress Physiol. 2024;12:100466. https://doi.org/10.1016/j.stress.2024.100466
  51. 51. Dubey A, Malla MA, Kumar A, Khan ML, Kumari S. Seed bio-priming with ACC deaminase-producing bacterial strains alleviates impact of drought stress in soybean (Glycine max (L.) Merr.). Rhizosphere. 2024;30:100873. https://doi.org/10.1016/j.rhisph.2024.100873
  52. 52. Shaffique S, Imran M, Kang SM, Khan MA, Asaf S, Kim WC, et al. Seed Bio-priming of wheat with a novel bacterial strain to modulate drought stress in Daegu, South Korea. Front Plant Sci. 2023;14:1118941. https://doi.org/10.3389/fpls.2023.1118941
  53. 53. Shaffique S, Khan MA, Wani SH, Imran M, Kang SM, Pande A, et al. Biopriming of maize seeds with a novel bacterial strain SH-6 to enhance drought tolerance in South Korea. Plants. 2022;11(13):1674. https://doi.org/10.3390/plants11131674
  54. 54. Nawaz H, Hussain N, Ahmed N, Alam J. Efficiency of seed bio-priming technique for healthy mungbean productivity under terminal drought stress. J Integr Agric. 2021;20(1):87-99. https://doi.org/10.1016/S2095-3119(20)63184-7
  55. 55. Kaldate R, Singh SK, Guleria G, Soni A, Naikwad D, Kumar N, et al. Current approaches in horticultural crops to mitigate the effect of drought stress. Stress Tol Hort Crops. 2021:213-40. https://doi.org/10.1016/B978-0-12-822849-4.00004-8
  56. 56. Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One. 2020;15(4):e0230615. https://doi.org/10.1371/journal.pone.0230615
  57. 57. Piri R, Moradi A, Balouchi H, Salehi A. Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci Hortic. 2019;257:108667. https://doi.org/10.1016/j.scienta.2019.108667
  58. 58. Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, Saxena AK. Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. Int J Environ Res Public Health. 2020;17(1):253. https://doi.org/10.3390/ijerph17010253
  59. 59. Parinith G, Lakshmi S, Renganayaki P, Nakkeeran S. Alleviation of salinity stress via seed priming in tomato (Solanum lycopersicum) with Bacillus paralicheniformis. Pharma Innov J. 2022;11(8):201-06.
  60. 60. Mitra D, Rodriguez AMD, Cota FIP, Khoshru B, Panneerselvam P, Moradi S, et al. Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiol Mol Plant Pathol. 2021;115:101679. https://doi.org/10.1016/j.pmpp.2021.101679
  61. 61. Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, et al. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact. 2019;14(1):416-23. https://doi.org/10.1080/17429145.2019.1640294
  62. 62. Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, et al. Impacts of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Front Plant Sci. 2018;9:1397. https://doi.org/10.3389/fpls.2018.01397
  63. 63. El-Ballat EM, Elsilk SE, Ali HM, Ali HE, Hano C, El-Esawi MA. Metal-resistant PGPR strain Azospirillum brasilense EMCC1454 enhances growth and chromium stress tolerance of chickpea (Cicer arietinum L.) by modulating redox potential, osmolytes, antioxidants and stress-related gene expression. Plants. 2023;12(11):2110. https://doi.org/10.3390/plants12112110
  64. 64. Farhangi-Abriz S, Tavasolee A, Ghassemi-Golezani K, Torabian S, Monirifar H, Rahmani HA. Growth-promoting bacteria and natural regulators mitigate salt toxicity and improve rapeseed plant performance. Protoplasma. 2020;257(4):1035-47. https://doi.org/10.1007/s00709-020-01493-1
  65. 65. Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15-19. https://doi.org/10.1016/j.tplants.2005.11.002
  66. 66. Irshad K, Shaheed Siddiqui Z, Chen J, Rao Y, Hamna Ansari H, Wajid D, et al. Bio-priming with salt tolerant endophytes improved crop tolerance to salt stress via modulating photosystem II and antioxidant activities in a sub-optimal environment. Front Plant Sci. 2023;14:1082480. https://doi.org/10.3389/fpls.2023.1082480
  67. 67. González MC, Roitsch T, Pandey C. Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction. Antioxidants. 2024;13(12):1553. https://doi.org/10.3390/antiox13121553
  68. 68. Jiao X, Takishita Y, Zhou G, Smith DL. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. 2021;12:634796. https://doi.org/10.3389/fpls.2021.634796
  69. 69. Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, et al. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front sustain food syst. 2021;5:667546. https://doi.org/10.3389/fsufs.2021.667546
  70. 70. Ullah A, Bano A, Khan N. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Front sustain food syst. 2021;5:618092. https://doi.org/10.3389/fsufs.2021.618092
  71. 71. EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, Waleed M, et al. Phytohormones as growth regulators during abiotic stress tolerance in plants. Front Agron. 2022;4:765068. https://doi.org/10.3389/fagro.2022.765068
  72. 72. Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res. 2020;238:126486. https://doi.org/10.1016/j.micres.2020.126486
  73. 73. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68(8):3795-801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  74. 74. dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst. 2020;4:136. https://doi.org/10.3389/fsufs.2020.00136
  75. 75. Khan N, Bano A, Ali S, Babar MA. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. J Plant Growth Regul. 2020;90:189-203. https://doi.org/10.1007/s10725-020-00571-x
  76. 76. Singh RP, Jha PN. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol. 2017;8:1945. https://doi.org/10.3389/fmicb.2017.01945
  77. 77. Mellidou I, Ainalidou A, Papadopoulou A, Leontidou K, Genitsaris S, Karagiannis E, et al. Comparative transcriptomics and metabolomics reveal an intricate priming mechanism involved in PGPR-mediated salt tolerance in tomato. Front Plant Sci. 2021;12:713984. https://doi.org/10.3389/fpls.2021.713984
  78. 78. Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol. 2019;10:2106. https://doi.org/10.3389/fmicb.2019.02106
  79. 79. Kumar A, Patel J, Meena VS, Ramteke P. Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr. 2019;42(11-12):1402-15. https://doi.org/10.1080/01904167.2019.1616757
  80. 80. Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci Total Environ. 2020;743:140682. https://doi.org/10.1016/j.scitotenv.2020.140682
  81. 81. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  82. 82. Etesami H, Jeong BR, Glick BR. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops-A review. Curr Res Biotechnol. 2023;5:100128. https://doi.org/10.1016/j.crbiot.2023.100128
  83. 83. Ji C, Wang X, Tian H, Hao L, Wang C, Zhou Y, et al. Effects of Bacillus methylotrophicus M4‐1 on physiological and biochemical traits of wheat under salinity stress. J Appl Microbiol. 2020;129(3):695-711. https://doi.org/10.1111/jam.14644
  84. 84. Rashid U, Yasmin H, Hassan MN, Naz R, Nosheen A, Sajjad M, et al. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep. 2022:1-21. https://doi.org/10.1007/s00299-020-02640-x
  85. 85. Etesami H, Glick BR. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Exp Bot. 2020;178:104124. https://doi.org/10.1016/j.envexpbot.2020.104124
  86. 86. Müller M. Foes or friends: ABA and ethylene interaction under abiotic stress. Plants. 2021;10(3):448. https://doi.org/10.3390/plants10030448
  87. 87. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol. 2017;8:2104. https://doi.org/10.3389/fmicb.2017.02104
  88. 88. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, et al. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant. 2015;153(1):79-90. https://doi.org/10.1111/ppl.12221
  89. 89. Goswami M, Suresh D. Plant growth-promoting rhizobacteria-alleviators of abiotic stresses in soil: a review. Pedosphere. 2020;30(1):40-61. https://doi.org/10.1016/S1002-0160(19)60839-8
  90. 90. Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst. 2021;4:618230. https://doi.org/10.3389/fsufs.2020.618230
  91. 91. Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci. 2016;17(6):976. https://doi.org/10.3390/ijms17060976
  92. 92. del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res. 2020;235:126439. https://doi.org/10.1016/j.micres.2020.126439
  93. 93. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem. 2013;66:1-9. https://doi.org/10.1016/j.plaphy.2013.01.020
  94. 94. Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X. Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol. 2017;119:26-34. https://doi.org/10.1016/j.apsoil.2017.05.033
  95. 95. Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol. 2019;10:1506. https://doi.org/10.3389/fmicb.2019.01506
  96. 96. Namwongsa J, Jogloy S, Vorasoot N, Boonlue S, Riddech N, Mongkolthanaruk W. Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under Normal and Deficit Water Conditi. J Microbiol Biotechnol. 2019:1777–89. https://doi.org/10.4014/jmb.1903.03062
  97. 97. Chandra D, Srivastava R, Glick BR, Sharma AK. Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine coracana (L.) Gaertn.). 3 Biotech. 2020;10:1-15. https://doi.org/10.1007/s13205-019-2046-4
  98. 98. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4:356. https://doi.org/10.3389/fpls.2013.00356
  99. 99. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536(7617):425-30. https://doi.org/10.1038/nature19094
  100. 100. Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R. Insight into the role of PGPR in sustainable agriculture and environment. Front sustain food syst. 2021;5:667150. https://doi.org/10.3389/fsufs.2021.667150

Downloads

Download data is not yet available.