Efficient organogenesis from the induced meristemoid of Anthurium andraeanum Linden cv. Tinora
DOI:
https://doi.org/10.14719/pst.2015.2.2.110Keywords:
Anthurium, organogenesis, meristemoid, TDZ, SEM, histologyAbstract
We present here an efficient micropropagation protocol through direct regeneration of plants from meristemoids in Anthurium andraeanum Linden cv. Tinora. About 96.6±0.33 of in vitro grown nodal segments having axillary buds were induced to form meristemoids on modified MS basal medium supplemented with 0.92 µM Thidiazuron (TDZ). The significantly highest numbers of shoots (25.6±0.23) were regenerated from 93.3±0.33% of meristemoids in the same culture medium. The histological and scanning electron microscopic (SEM) study confirmed direct organogenesis from the meristemoid.
Downloads
References
Altamura, M. M., F. Capitani, G. Falasca, A. Gallelli, S. Scaramagli, M. Buen, P. Torrigiani, and N. Bagni. 1995. Morphogenesis in Cultured Thin Layers and Pith Explants of Tobacco. I. Effect of Putrescine on Cell Size, Xylogenesis and Meristemoid Organization. J Plant Physiol 147: 101-106. doi: 10.1016/S0176-1617(11)81420-3
Beyramizade, E., P. Azadi, and M. Mii. 2008. Optimization of factors affecting organogenesis and somatic embryogenesis of Anthurium andreanum Lind Tera. Propag Ornament Plant 8: 198–203.
Chen, C., X. Hou, H. Zhang, G. Wang, and L. Tian. 2011. Induction of Anthurium andraeanum ‘‘Arizona’’ tetraploid by colchicine in vitro. Euphytica 181: 137-145. 10.1007/s10681-010-0344-3
Debnath, S. C. 2005. A. Two-step Procedure for Adventitious Shoot Regeneration from in vitro-derived Lingonberry Leaves: Shoot Induction with TDZ and Shoot Elongation Using Zeatin. HortScience 40: 189-192.
Duclercq, J., B. Sangwan-Norreel, M. Catterou, and R. S. Sangwan. 2011. De novo shoot organogenesis: from art to science. Trends in Plant Science 16: 597-606. doi: 10.1016/j.tplants.2011.08.004
Fisher, K., and S. Turner. 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17: 1061–1066. doi: doi: 10.1016/j.cub.2007.05.049
Gill, R. and P. K. Saxena. 1992. Direct somatic embryogenesis and regeneration of plants from seedling explant of peanut (Arachis hypogeae): promotive role of thidiazuron. Can J Bot 70: 1186-1192. doi: 10.1139/b92-147
Gu, A., W. Liu, C. Ma, and J. Cui. 2012. Regeneration of Anthurium andraeanum from Leaf Explants and Evaluation of Microcutting Rooting and Growth under Different Light Qualities. HortScience 47: 88–92.
Hicks, G. S. 1994. Shoot Induction and Organogenesis in vitro: A developmental Perspective. In Vitro Cell Dev Biol 30: 10-15. doi: 10.1007/BF02632113
Joseph, D., K. P. Martin, J. Madassery, and V. J. Philip. 2003. In vitro propagation of three commercial cut flower cultivars of Anthurium andraeanum Hort. Indian Journal of Experimental Biology 41: 154-159. PMID: 15255608
Kumar, N., and M. P. Reddy. 2012. Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: A candidate biodiesel plant. Industrial Crops and Products 39: 62– 68. doi: 10.1016/j.indcrop.2012.02.011
Lata, H., S. Chandra, Y-H. Wang, V. Raman, and I. A. Khan. 2013. TDZ-Induced High Frequency Plant Regeneration through Direct Shoot Organogenesis in Stevia rebaudiana Bertoni: An Important Medicinal Plant and a Natural Sweetener. American Journal of Plant Sciences 4: 117-128. doi: 10.4236/ajps.2013.41016
Martin, K. P., D. Joseph, J. Madassery, and V. J. Philip. 2003. Direct Shoot Regeneration from Lamina explants of two commercial cut flower cultivars of Anthurium andraeanum Hort. In Vitro Cell Dev Biol—Plant 39: 500–504. doi: 10.1079/IVP2003460
Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
Murthy, B. N. S., S. J. Murch, and P. K. Saxena. 1998. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol - Plant 34: 267-275. doi: 10.1007/BF 02822732
Paul, S., A. Dam, A. Bhattacharyya, and T. K. Bandyopadhyay. 2011. An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tiss Organ Cult 105: 271–283. doi: 10.1007/s11240-010-9864-8
Pillitteri, L. J., K. M. Peterson, R. J. Horst, and K. U. Torii. 2011. Molecular Profiling of Stomatal Meristemoids Reveals New Component of Asymmetric Cell Division and Commonalities among Stem Cell Populations in Arabidopsis. The Plant Cell 23: 3260–3275. doi: 10.1105/tpc.111.088583
Raad, M. K., S. B. Zanjani, M. Shoor, Y. Hamidoghli, A. R. Sayyad, A. Kharabian-Masouleh, and B. Kaviani. 2012. Callus induction and organogenesis capacity from lamina and petiole explants of Anthurium andreanum Linden (Casino and Antadra). AJCS 6: 928-937. ISSN: 1835-2707
Slesak´, H., M. Lisznianska´, M. Popielarska-Koniecznaa, G. Góralskia, E. Sliwinskab, and A. J. Joachimiaka. 2014. Micropropagation protocol for the hybrid sorrel Rumex tianschanicus×Rumex patientia, an energy plant. Histological, SEM and ?ow cytometric analyses. Industrial Crops and Products. 62: 156–165. doi: 10.1016/j.indcrop.2014.08.031
Su Y. H., Y. B. Liu and X. S. Zhang. 2011. Auxin–Cytokinin interaction regulates meristem development. Molecular Plant 4: 616–625.
Thomas, J. C. and F. R. Katterman. 1986. Cytokinin activity induced by thidiazuron. Plant Physiol 81: 681-683. doi: http://dx.doi.org/10.1104/pp.81.2.681
Thorpe, T. A. 1993. In vitro organogenesis and somatic embryogenesis; physiological and biochemical aspects. In: Plant morphogenesis: molecular aspects. Roubelakis-Angelakis, K. A., and K. Tran Than Van, Eds. Plenum Press, New York, USA.
Vargas, T. E., and A. Mejías. 2004. Plant regeneration of Anthurium andreanum cv Rubrun. Electronic Journal of Biotechnology ISSN: 0717-3458. doi: 10.2225/vol7-issue3-fulltext-11
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).