DNA barcoding of plants: Selection of core markers for taxonomic groups

  • Ankush Ashok Saddhe Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa-403726, India
  • Kundan Kumar Birla Institute of Technology & Science

Abstract

Plant identification is a crucial and routine taxonomic procedure in order to understand and conserve the biodiversity. Anthropogenic activity, pollution, deforestation, and exploitation of natural resources have been threatening to the plant biodiversity. Unfortunately, the major concern of traditional identification of plants is the gradual declined number of taxonomic expertise and lack of tools which accurately discriminate plant seeds, plant parts and seedling, and herbal adulterant. Presently, it is of utmost importance that plant biodiversity to be preserved. To overcome this issues the advent of molecular marker based technique which utilized short fragment of DNA and correctly assign plant taxa to their taxonomic group, called as DNA barcoding. First time, single marker based taxon identification successfully implemented to an animal taxa using mitochondrial cytochrome I (COI) gene fragment. However, Plant DNA barcoding is more complex and it often requires more than one set of DNA markers. In the present review, we have compiled the recent progress of plant DNA barcoding in various taxonomic groups and utility of plastids and nuclear DNA based markers for plant identification.

Downloads

Download data is not yet available.

Author Biography

Kundan Kumar, Birla Institute of Technology & Science

Department of Biological Sciences, Assistant Professor

References

1. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Biol Sci SerB. 2003; 270: S96-S99. https://doi.org/10.1098/rsbl.2003.0025

2. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc Biol Sci SerB. 2003; 270: 313-321. https://doi.org/10.1098/rspb.2002.2218

3. CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009; 106: 12794-12797. https://doi.org/10.1073/pnas.0905845106

4. China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA. 2011; 108: 19641-19646. https://doi.org/10.1073/pnas.1104551108

5. Chen S, Yao H, Han J, Liu C, Song J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. Plos One. 2010; 5: e8613. https://doi.org/10.1371/journal.pone.0008613

6. Mohammed Abubakar B, MohdSalleh F, Shamsir Omar MS, Wagiran A. DNA Barcoding and Chromatography Fingerprints for the Authentication of Botanicals in Herbal Medicinal Products. Evid Based Complement Alternat Med. 2017.1352948.

7. Li HQ, Chen JY, Wang S, Xiong SZ. Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Mol Ecol Resour. 2012; 12: 783-790. https://doi.org/10.1111/j.1755-0998.2012.03147.x

8. Chen J, Zhao J, Erickson DL, Xia N, Kress WJ. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Mol Ecol Resour. 2015; 15: 337-348. https://doi.org/10.1111/1755-0998.12319

9. Xiang XG, Hu H, Wang W, Jin XH. DNA barcoding of the recently evolved genus Holcoglossum (Orchidaceae: Aeridinae): a test of DNA barcode candidates. Mol Ecol Resour. 2011; 11: 1012-1021. https://doi.org/10.1111/j.1755-0998.2011.03044.x

10. Zhang CY, Wang FY, Yan HF, Hao G, Hu CM, et al. Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae). Mol Ecol Resour. 2012; 12: 98-108. https://doi.org/10.1111/j.1755-0998.2011.03076.x

11. Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant biotechnol J. 2016; 14: 8-21. https://doi.org/10.1111/pbi.12419

12. Janjua S, Fakhar-I-Abbas, William K, Malik IU, Mehr J. DNA Mini-barcoding for wildlife trade control: a case study on identification of highly processed animal materials. Mitochondrial DNA. 2017; 28: 544-6. https://doi.org/10.3109/24701394.2016.1155051

13. Manoylov KM. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J phycol. 2014; 50: 409-24. https://doi.org/10.1111/jpy.12183

14. Subhadra B. Algal biorefinery‐based industry: an approach to address fuel and food insecurity for a carbon‐smart world. J Sci Food Agric. 201; 91: 2-13. https://doi.org/10.1002/jsfa.4207

15. Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, et al. (2016) DNA barcoding green microalgae isolated from neotropical inland waters. Plos One 11(2): e0149284. https://doi.org/10.1371/journal.pone.0149284

16. Hall JD, Fucikova K, Lo C, Lewis LA, Karol KG. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogam, Algol. 2010; 31(4):529-55.

17. Buchheim MA, Keller A, Koetschan C, Forster F, Merget B, Wolf M. Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. PLoS One. 2011; 6(2):e16931. https://doi.org/10.1371/journal.pone.0016931

18. Caisová L, Marin B, Melkonian M. A close-up view on ITS2 evolution and speciation-a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol. 2011; 11: 262. https://doi.org/10.1186/1471-2148-11-262

19. Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012; 10: e1001419. https://doi.org/10.1371/journal.pbio.1001419

20. Lang AS, Kruijer JD, Stech M. DNA barcoding of Arctic bryophytes: an example from the moss genus Dicranum (Dicranaceae, Bryophyta). Polar Biol. 2014; 37: 1157-69. https://doi.org/10.1007/s00300-014-1509-7

21. Hofbauer WK, Forrest LL, Hollingsworth PM, Hart ML. Preliminary insights from DNA barcoding into the diversity of mosses colonising modern building surfaces. Bryophyte Diversity Evol. 2016; 38:1-22. https://doi.org/10.11646/bde.38.1.1

22. Liu Y, YAN HF, Cao T, GE XJ. Evaluation of 10 plant barcodes in bryophyta (Mosses). J Syst Evol. 2010; 48: 36-46. https://doi.org/10.1111/j.1759-6831.2009.00063.x

23. Ebihara A, Nitta JH, Ito M. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PLoS One 2010; 5: e15136. https://doi.org/10.1371/journal.pone.0015136

24. Li F-W, Kuo L-Y, Rothfels CJ, Ebihara A, Chiou W-L, Windham MD, et al. rbcL and matK earn two thumbs up as the core DNA barcode for Ferns. PLoS One. 2011; 6: e26597. https://doi.org/10.1371/journal.pone.0026597

25. Ma XY, Xie CX, Liu C, Song JY, Yao H, Luo K, Zhu YJ, Gao T, Pang XH, Qian J, Chen SL. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biol Pharm Bull. 2010; 33: 1919-24. https://doi.org/10.1248/bpb.33.1919

26. Gu W, Song J, Cao Y, Sun Q, Yao H, Wu Q, Chao J, Zhou J, Xue W, Duan J. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PloS one. 2013; 8(6): e67818. https://doi.org/10.1371/journal.pone.0067818

27. Wang AH, Wang FG, Zhang WW, Ma XD, Li XW, Yi QF, Li DL, Duan L, Yan YH, Xing FW. Revision of series Gravesiana (Adiantum L.) based on morphological characteristics, spores and phylogenetic analyses. PloS one. 2017; 12(4): e0172729. https://doi.org/10.1371/journal.pone.0172729

28. Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016; 261:201-17. https://doi.org/10.11646/phytotaxa.261.3.1

29. Sass C, Little DP, Stevenson DW, Specht CD. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of Cycads. PloS One 2007; 2: e1154. https://doi.org/10.1371/journal.pone.0001154

30. Li Y, Gao LM, Poudel RC, Li DZ, Forrest A. High universality of matK primers for barcoding gymnosperms. J Syst Evol. 2011; 49: 169-75. https://doi.org/10.1111/j.1759-6831.2011.00128.x

31. Vijayan K, Tsou CH. DNA barcoding in plants: taxonomy in a new perspective. Curr. Sci. 2010:1530-41.

32. Kress J, Erickson DL. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007; 2: e508. https://doi.org/10.1371/journal.pone.0000508

33. Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour. 2008; 8: 480-490. https://doi.org/10.1111/j.1471-8286.2007.02002.x

34. Saddhe AA, Jamdade RA, Kumar K. Assessment of mangroves from Goa, west coast India using DNA barcode. SpringerPlus. 2016; 5:1554. https://doi.org/10.1186/s40064-016-3191-4

35. Saddhe AA, Jamdade RA, Kumar K. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India. PLoS One. 2017; 12: e0183245. https://doi.org/10.1371/journal.pone.0183245

36. Awad M, Fahmy RM, Mosa KA, Helmy M, El-Feky FA. Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput Biol Chem. 2017; 71: 20-31. https://doi.org/10.1016/j.compbiolchem.2017.09.003
Published
2017-12-25
How to Cite
SADDHE, Ankush Ashok; KUMAR, Kundan. DNA barcoding of plants: Selection of core markers for taxonomic groups. Plant Science Today, [S.l.], v. 5, n. 1, p. 9-13, dec. 2017. ISSN 2348-1900. Available at: <http://horizonepublishing.com/journals/index.php/PST/article/view/356>. Date accessed: 19 jan. 2018. doi: https://doi.org/10.14719/pst.2018.5.1.356.
Section
Mini Reviews