O-glycosylation in plant and mammal cells: the use of chemical inhibitors to understand the biosynthesis and function of O-glycosylated proteins
DOI:
https://doi.org/10.14719/pst.2015.2.2.67Keywords:
O-glycosylation, 3, 4-dehydro-L-proline, 4-dehydroxybenzoate, prolyl-hydroxylase, N-acetyl-galactosaminyltransferases, α, α-dipyridylAbstract
Glycosylation is the most common posttranslational modification of proteins and consists of the addition of sugar moiety to proteins. The resulting glycosylated proteins are often secreted to the extracellular compartment or integrated into different cell organelles. This modification was identified in plant as well as in mammalian cells. A number of plant and mammal proteins are either N- or O-glycosylated. This review focuses on O-glycosylation which refers to linkage of a glycan to hydroxyl group of serine, threonine or proline residues. O-glycosylation can be altered by the action of chemical inhibitors. For instance, 3,4-dehydro-L-proline, ethyl 3,4-dehydroxy benzoate and a,a-dipyridyl inhibit the activity of prolyl4-hydroxylase, a key enzyme for plant O-glycosylation. In addition, a small molecule inhibitor designated 1-68A inhibits the polypeptide N-acetylgalactosaminyltransferases of mammalian cells. The aim of this review is to summarize the role and mechanism of action of these inhibitors of O-glycosylation and their impact on cell development in plants and mammals.Downloads
References
Apweiler, R., H. Hermjakob, and N. Sharon. 1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochemica et Biophysica Acta 1473: 4-8. doi: 10.1016/S0304-4165 (99) 00165-8.
Bardor, M., J.A. Cremata, and P. Lerouge. 2010. Glycan Engineering in Transgenic Plants. Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and Bioengineering 41: 409 – 424. doi: 10.1002/9781444391015.ch17.
Bennett, E.P., U. Mandel, H. Clausen, T.A. Gerken, T.A. Fritz, and L.A. Tabak. 2012. Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22: 736-756. doi: 10.1093/glycob/cwr182. Epub 2011 Dec 18.
Berger, E.G. 1999. Tn-syndrome. Biochemica et Biophysica Acta 1455: 255-268. doi: 10.1016/S0925-4439 (99) 00069-1.
Brockhausen, I. 1999. Pathways of O-glycan biosynthesis in cancer cells. Biochemica et Biophysica Acta 1473: 67-95. doi: 10.1016/S0304-4165 (99) 00170-1.
Cooper, J.B, and J.E. Varner. 1983. Selective inhibition of proline hydroxylation by 3,4-dehydroproline. Plant Physiology 73: 324-328. doi: 10.1104/pp.73.2.324.
Cooper, J.B., J.E. Heuser, and J.E. Varner. 1994. 3,4-Dehydroproline inhibits cell wall assembly and cell division in tobacco protoplasts. Plant Physiology 104: 747-752. doi: 10.1104/pp.104.2.747.
Ellis, M., J. Egelund., C. Schultz, and A. Bacic. 2010. Arabinogalactan-proteins (AGPs): key regulators at the cell surface? Plant Physiology 153: 403-419. doi: 10.1104/pp.110.156000.
Estévez, J., M.J. Kieliszewski., N. Khitrov, and C. Somerville. 2006. Characterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan-protein and extensin motifs in Arabidopsis. Plant Physiology 142: 458-470. doi: 10.1104/pp.106.084244.
Ferris, P.J., J.P. Woessner., S. Waffenschmidt., S. Kilz., J. Drees, and U.W. Goodenough. 2001. Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. Biochemistry 40: 2978-2987. doi: 10.1021/bi0023605.
Gomord, V., A.C. Fitchette., L. Menu-Bouaouiche., C. Saint-Jore-Dupas., C. Plasson., D. Michaud, and L. Faye. 2010. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal 8: 564-587. doi: 10.1111/ j.1467-7652.2009.00497.x.
Haltiwanger, R.S, and J.B Lowe. 2004. Role of Glycosylation in Development. Annual Review of Biochemistry. 73: 491-537. doi: 10.1146/annurev.biochem.73.011303.074043
Hang, H.C, and C.R. Bertozzi. 2005. The chemistry and biology of mucin-type O-linked glycosylation. Bioorganic & Medicinal Chemistry. 13: 5021-5034. doi: 10.1016/j.bmc.2005.04.085.
Hang, H.C., C. Yu., K.G. Ten Hagen., E. Tian., K.A. Winans., L.A. Tabak, and C.R. Betozzi. 2004. Small Molecule Inhibitors of Mucin-Type O-Linked Glycosylation from a Uridine-Based Library. Chemistry Biology. 11: 337-345. doi: 10.1016/j.chembiol.2004.02.023.
Karnoup, A.S., V. Turkelson, and W.H.K. Anderson. 2005. O-Linked glycosylation in maize-expressed human IgA1. Glycobiology. 15: 965-981. doi: 10.1093/GLYCOB/CWI077.
Kerwar, S.S, and A.M. Felix. 1976. Effect of L-3,4-Dehydroproline on Collagen Synthesis and Hydroxylase Activity in Mammalian Cell Cultures Proly. The Journal of Biological Chemistry. 251: 503-509. PMID: 173719.
Kieliszewski, M.J, and E. Shpak. 2001. Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cellular and Molecular Life Sciences. 58: 1386-1398. PMID: 11693521.
Kieliszewski, M.J., D.T.A. Lamport., L. Tan, and M.C. Cannon. 2010. Plant Polysaccharides, Biosynthesis and Bioengineering. In: Annual Plant Reviews. P. Ulvskov, Ed . p. 321-342. doi: 10.1002/9781444391015.
Kirk Bergstrom, S.B, and L. Xia. 2013. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology. 0: 1-12. doi: 10.1093/glycob/cwt045.
Kodama, Y., C.J. Boreiko., S.C. Maness, and T.W. Hesterberg. 1993. Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cel1s in culture. Carcinogenesis. 14: 691-697. doi: 10.1093/carcin/14.4.691.
Lamport, D.T.A., M.J. Kieliszewski., Y. Chen, and M.C. Cannon. 2011. Role of the Extensin Superfamily in Primary Cell Wall Architecture. Plant Physiology. 156: 11-19. doi: 10.1104/pp.110.169011.
Naim, H.Y, and M.J. Lentze. 1992. Impact of 0-glycosylation on the function of human intestinal lactase-phlorizin hydrolase.Characterization of glycoforms varying in enzyme activity and localization of 0-glycoside addition. The Journal of Biological Chemistry. 267: 25494-504.
Nguema-Ona, E., M. Vicré-Gibouin., M.A. Cannesan, and A. Driouich. 2013. Arabinogalactan proteins in root-microbe interactions. Trends in Plant Science. 18: 440-449.doi: http://dx.doi.org/10.1016/j.tplants.2013.03.006.
Owens, N.W., J. Stetefeld., E. Lattová, and F. Schweizer. 2010. Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices. Journal of the American Chemical Society. 132: 5036-5042. doi: 10.1021/ja905724d.
Patsos, G., V. Hebbe-Viton., R. San Martin., C. Paraskeva., T. Gallagher, and A. Corfield. 2005. Action of a library of O-glycosylation inhibitors on the growth of human colorectal cancer cancer cells in culture. Biochemical Society Transactions. 33: 721-723. doi: 10.1042/BST0330721.
Remaley, A.T., M. Ugorski., N. Wu., L. Litzky., S.R. Burger., J.S. Moore., M. Fukuda, and S.L. Spitalnik. 1991. Expression of human glycophorin A in wild type and glycosylation-deficient Chinese hamster ovary cells. Role of N- and O-linked glycosylation in cell surface expression. The Journal of Biological Chemistry. 266: 24176-83. PMID: 1748686.
Ricard-Blum, S. 2010. The collagen family. Cold Spring Harbor Perspectives in Biology. p. 1-19. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a004978.
Rosenbloom, J, and D.J. Prockop. 1970. Incorporation of 3,4-Dehydroproline into Protocollagen and Collagen. The journal of Biological Chemistry. 245: 3381-3368. PMID: 5459639.
Schmidt, A., K. Datta, and A. Marcus. 1991. Peptidyl proline hydroxylation and the growth of a soybean cell culture. Plant Physiology. 96: 656-659. doi: 10.1104/pp.96.2.656
Seifert, G.J, and K. Roberts. 2007. The biology of Arabinogalactan proteins. Annual Review of Plant Biology. 58 137-161. doi: 10.1146/annurev.arplant. 58.032806.103801.
Showalter, A.M. 1993. Structure and Function of Plant Cell Wall Proteins. Plant Cell. 59-23. doi: 10.1105/tpc.5.1.9.
Showalter, A.M. 2001. Arabinogalactan proteins: structure, expression and function. Cellular and Molecular Life Sciences. 58: 1399-1417. PMID: 11693522.
Showalter, A.M., B. Keppler., J. Lichtenberg., D. Gu, and L.R. Welch. 2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiology. 153: 485-513. doi: 10.1104/pp.110.156554. Epub 2010 Apr 15.
Shpak, E., E. Barbar., J.F. Leykam, and M.J. Kieliszewski. 2001. Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. The Journal of Biological Chemistry. 276: 11272- 11278. doi:10.1074/jbc.M011323200.
Shpak, E., J.F. Leykam, and M.J, Kieliszewski. 1999. Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proceedings of the National Academy of Sciences 96: 14736-14741. PMCID: PMC2471.
Sola, R.J, and K. Griebenow. 2010. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 24: 9-21. doi: 10.2165/11530550-000000000-00000.
Strasser, R. 2009. Localization of plant N-glycan processing enzymes along the secretory pathway. Plant Biosystems. 143: 636-642. doi: 10.1080/11263500903233391.
Strasser, R. 2013. Engineering of human-type O-glycosylation in Nicotiana benthamiana plants. Bioengineered. 4: 1-6. doi: 10.4161/bioe.22857. Epub 2012 Nov 12.
Takeuchi, T, and D.J. Prockop. 1969. Biosynthesis of abnormal collagens with amino acid analogues: I. Incorporation of l- azetidine-2-carboxylic acid and cis-4-fluoro-l-proline into protocollagen and collagen. Biochemica et Biophysica Acta. 176: 142-155. doi: 10.1016/0005-2795(69)90153-6.
Takeuchi, T., J. Rosenbloom, and D.J. Prockop. 1969. Biosynthesis of abnormal collagens with amino acid analogues: II. Inability of cartilage cells to extrude collagen polypeptides containing l-azetidine-2-carboxylic acid or cis-4-fluoro-l-proline. Biochemica et Biophysica Acta. 175: 156-164. doi: 10.1016/0005-2795(69)90154-8.
Tan, L., F. Qiu., D.T.A. Lamport, and M.J. Kieliszewski. 2004. Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. The Journal of Biological Chemistry. 279: 13156-13165. doi:10.1074/jbc.M311864200.
Tan, L., J.F. Leykam, and M.J. Kieliszewski. 2003. Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiology. 132: 1362-1369. doi: 10.1104/pp.103.021766.
Tarp, M.A, and H. Clausen. 2008. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochemica et Biophysica Acta. 1780: 546-563. doi: 10.1016/j.bbagen.2007.09.010.
Tian, E., G.T. Hagen Kelly., L. Shum., H.C. Hang., Y. Imbert., W.W. Young Jr., C.R. Bertozzi, and L.A. Tabak. 2004. An Inhibitor of O-Glycosylation Induces Apoptosis in NIH3T3 Cells and Developing Mouse Embryonic Mandibular Tissue. The Journal of Biological Chemistry. 48: 50382-50390. doi: 10.1074/jbc.M406397200.
Tsuboi, S, and M. Fukuda. 2001. Roles of O-linked oligosaccharides in immune responses. Bioessays. 1: 46-53.doi: 10.1002/1521-1878(200101)23:1<46::AID-BIES1006>3.0.CO;2-3.
Tullio, M.C.D., C. Paciolla., F.D. Vecchia., N. Rascio., S. D'Emerico., L.D. Gara., R. Liso, and O. Arrigoni. 1999. Changes in onion root development induced by the inhibition of peptidyl-prolyl hydro-xyllase and influence of the ascorbate system on cell division and elongation. Planta. 209: 424-434. PMID: 10550623.
van den Steen P., P. Rudd, M. Wormald, R. Dwek and G. Opdenakker. 2000. O-Linked glycosylation in focus. Trends Glycoscience Glycotechnology. 63: 35-49.
van den Steen, P., P.M. Rudd., R.A. Dwek, and G. Opdenakker. 1998. Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology . 33: 151-208. PMID: 9673446.
Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97-130. doi: 10.1093/glycob/3.2.97.
Velasquez, S.M., J.S. Salter., J. Gloazzo Dorosz., B.L. Petersen, and J.M. Estevez. 2012. Recent advances on the post-translational modifications of EXTs and their roles in cell expansion. Frontier Plant Physiology 3:1-6. doi: 10.3389/fpls.2012.00093.
Velasquez, S.M., M.M. Ricardi., D.J. Gloazzo., P.V. Fernandez., A.D. Nadra., L. Pol-Fachin., J. Egelund., S. Gille., M. Ciancia., H. Verli., M. Pauly., A. Bacic., E.C. Olsen., P. Ulvskov., L.B. Petersen., C. Somerville., N.D. Iusem, and J.M. Estevez. 2011. Essential role of O-glycosylated plant cell wall extensins for polarized root hair growth. Science 332: 1401-1403. doi: 10.1126/science.1206657.
Vicré, M., C. Santaella., S. Blanchet., A. Gateau, and A. Driouich. 2005. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiology 138: 998-1008. doi: 10.1104/pp.104. 051813.
Vlad, F., T. Spano., D. Vlad., F. Bou Daher., A. Ouelhadj, and P. Kalaitzis. 2007. Arabidopsis prolyl 4-hydroxylases are differentially expressed in response to hypoxia, anoxia and mechanical wounding. Plant Signaling & Behavior 2: 368-369. doi: 10.1111/j.1399-3054.2007.00915.x.
Wilson Iain, B.H. 2002. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology 12: 569-577. doi: 10.1016/S0959-440X (02) 00367-6.
Wopereis, S., D.J. Lefeber., E. Morava, and R.A. Wevers. 2006. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review Clinical Chemistry 52: 574-600. doi: 10.1373/clinchem.2005.063040.
Xu C., T. Takác., C. Burbach., D. Menzel, and J. Šamaj. 2011. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA). BMC Plant Biology 11: 38. doi: 10.1186/1471-2229-11-38.
Xu, J., L. Tan., D.T.A. Lamport., A.M. Showalter, and M.J. Kieliszewski. 2008. The O-Hyp glycosylation code in tobacco and Arabidopsis and a proposed role of Hyp-glycans in secretion. Phytochemistry 69: 1631-1640. doi: 10.1016/j.phytochem.2008.02.006. Epub 2008 Mar 25.
Zhang, X., Y. Ren, and J. Zhao. 2008. Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum. Journal of Experimental Botany 59: 4045-4058. doi: 10.1093/jxb/ern245.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).