Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

MALDI-TOF MS identification of Bacillus subtilis SOE 7 against red rot pathogen Colletotrichum falcatum in sugarcane

DOI
https://doi.org/10.14719/pst.10071
Submitted
16 June 2025
Published
03-12-2025

Abstract

The present research focuses to isolate, identify, characterize, screen and application of bacterial endophyte with antifungal potential against red rot causing pathogen Colletotrichum falcatum in sugarcane. Endophytic bacteria and C. falcatum were isolated from healthy roots and infected sugarcane plants respectively.  MALDI-TOF MS was used to identify endophytic bacterial isolates from sugarcane roots and were screened for the antagonistic activity, hydrogen cyanide and siderophore production. The quantity of lipopeptides produced by different isolate was evaluated using HPLC and the efficient strain was selected, screened and employed for biocontrol of red rot in sugarcane under field conditions. Endophytes such as Bacillus, Enterobacter and Klebsiella were the predominant genera. Notably, Bacillus sp. SOE 7 inhibited C. falcatum mycelial growth by 62.25 %, showing high hydrogen cyanide production (15.68 µg mg-1) and lower siderophore production compared to Bacillus sp. SOE 1 and SOE 3. HPLC analysis revealed Bacillus sp. SOE 7 produced lipopeptides surfactin (2.05 mg L-1) and iturin (1.52 mg L-1), likely contributing to its antagonistic activity. Field application of this isolate significantly reduced disease incidence and increased cane yield compared to the control. The bacterial endophyte Bacillus subtilis SOE 7 isolated from sugarcane, exhibits maximum antifungal activity against the red rot pathogen C. falcatum and effectively controls the disease in the field.  

References

  1. 1. Viswanathan R. Severe red rot epidemics in sugarcane in subtropical India: role of aerial spread of the pathogen. Sugar Tech. 2023;25:1275-7. https://doi.org/10.1007/s12355-023-01292-x
  2. 2. Malathi P, Viswanathan R, Elamathi E, Kaverinathan K, Manivannan K, Nithiyanantham R. Approaches endeavoured to manage red rot under field conditions. J Sugarcane Res. 2022;12(2):128-39. https://doi.org/10.37580/JSR.2022.2.12.128-139
  3. 3. Jernisha J, Poorniammal R, Sivakumar U, Harish S, Sethuraman K. Plant growth promoting microorganisms and emerging biotechnological approaches for sugarcane disease management. J Pure Appl Microbiol. 2024;18(4):2205-17. https://doi.org/10.22207/JPAM.18.4.27
  4. 4. Viswanathan R, Rao GP. Disease scenario and management of major sugarcane diseases in India. Sugar Tech. 2011;13(4):336-53. https://doi.org/10.1007/s12355-011-0102-4
  5. 5. Patel P, Shah R, Joshi B, Ramar K, Natarajan A. Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum. Biotechnol Rep. 2019;21:e00317. https://doi.org/10.1016/j.btre.2019.e00317
  6. 6. Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, et al. Biopesticides as a promising alternative to synthetic pesticides: a case for microbial pesticides, phytopesticides and nanobiopesticides. Front Microbiol. 2023;14:1040901. https://doi.org/10.3389/fmicb.2023.1040901
  7. 7. Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications - a review. Microbiol Res. 2023;266:127256. https://doi.org/10.1016/j.micres.2022.127256
  8. 8. Mehnaz S. Plant growth-promoting bacteria associated with sugarcane. In: Bacteria in agrobiology: crop ecosystems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 165-87 https://doi.org/10.1007/978-3-642-18357-7_7
  9. 9. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R. Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and diseases. Crop Protect. 2001;20:1-11. https://doi.org/10.1016/S0261-2194(00)00056-9
  10. 10. Compant S, Clement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669-78. https://doi.org/10.1016/j.soilbio.2009.11.024
  11. 11. Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods. 2017;138:20-9. https://doi.org/10.1016/j.mimet.2016.09.003
  12. 12. Wang X, Wu G, Han S, Yang J, He X, Li H. Differentiation and identification of endophytic bacteria from Populus based on mass fingerprints and gene sequences. Int J Mol Sci. 2023;24(17):13449. https://doi.org/10.3390/ijms241713449
  13. 13. Ravichandran V, Ganapathy S, Shanmuganathan M, Jayakumar J, Gayathry G, Saravanan PA, et al. Resistance of sugarcane clones (Saccharum sp.) to red rot disease (Colletotrichum falcatum Went) and analysis of resistant clone by FTIR. Int J Plant Soil Sci. 2023;35(18):1250-6. https://doi.org/10.9734/ijpss/2023/v35i183391
  14. 14. Hossain MI, Ahmad K, Vadamalai G, Siddiqui Y, Saad N, Ahmed OH, et al. Phylogenetic analysis and genetic diversity of Colletotrichum falcatum isolates causing sugarcane red rot disease in Bangladesh. Biology. 2021;10(9):862. https://doi.org/10.3390/biology10090862
  15. 15. Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A. 2017;114(12):E2450-9. https://doi.org/10.1073/pnas.1616148114
  16. 16. Arthee R, Marimuthu P. Studies on endophytic Burkholderia sp. from sugarcane and its screening for plant growth promoting potential. J Exp Biol Agric Sci. 2017;5(2):242-57. https://doi.org/10.18006/2017.5(2).242.257
  17. 17. Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4(5):732-42. https://doi.org/10.1038/nprot.2009.37
  18. 18. Van Veen SQ, Claas ECJ, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. 2010;48(3):900-07. https://doi.org/10.1128/JCM.02071-09
  19. 19. Anith KN, Radhakrishnan NV, Manomohandas TP. Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res. 2003;158(2):91-7. https://doi.org/10.1078/0944-5013-00179
  20. 20. Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG. Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol. 2017;8:446. https://doi.org/10.3389/fmicb.2017.00446
  21. 21. Ulloa-Muñoz R, Olivera-Gonzales P, Castañeda-Barreto A, Villena GK, Tamariz-Angeles C. Diversity of endophytic plant-growth microorganisms from Gentianella weberbaueri and Valeriana pycnantha, highland Peruvian medicinal plants. Microbiol Res. 2020;233:126413. https://doi.org/10.1016/j.micres.2020.126413
  22. 22. Millar RL, Higgins VJ. Association of cyanide with infection of birds-foot trefoil by Stemphylium loti. Phytopathology. 1970;60:104-10. https://doi.org/10.1094/Phyto-60-104
  23. 23. Sadasivam S, Manickam A. Quantification of HCN production. In: Biochemical methods for agricultural sciences. Coimbatore: Wiley Eastern Ltd and TNAU; 1992. p. 98
  24. 24. Yao D, Ji Z, Wang C, Qi G, Zhang L, Ma X, et al. Coproducing iturin A and poly-γ-glutamic acid from rapeseed meal under solid-state fermentation by the newly isolated Bacillus subtilis strain 3-10. World J Microbiol Biotechnol. 2012;28(3):985-91. https://doi.org/10.1007/s11274-011-0896-y
  25. 25. Dlamini SP, Akanmu AO, Babalola OO. Rhizospheric microorganisms: the gateway to a sustainable plant health. Front Sustain Food Syst. 2022;6:925802. https://doi.org/10.3389/fsufs.2022.925802
  26. 26. Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash GP, Saxena AK. Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control. 2019;137:104014. https://doi.org/10.1016/j.biocontrol.2019.104014
  27. 27. Jayakumar V, Ramesh Sundar A, Viswanathan R. Biocontrol of Colletotrichum falcatum with volatile metabolites produced by endophytic bacteria and profiling VOCs by headspace SPME coupled with GC-MS. Sugar Tech. 2021;23:94-107. https://doi.org/10.1007/s12355-020-00891-2
  28. 28. Lovecka P, Kroneislova G, Novotna G, Roderova J, Demnerova K. Plant growth-promoting endophytic bacteria isolated from Miscanthus giganteus and their antifungal activity. Microorganisms. 2023;11(11):2710. https://doi.org/10.3390/microorganisms11112710
  29. 29. Hazarika DJ, Goswami G, Gautom T, Parveen A, et al. Lipopeptide-mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019;19(1):1-13. https://doi.org/10.1186/s12866-019-1440-8
  30. 30. Anju AB, Natarajan C, Preetha R, Rajan SA, Soumya VI, Anith KN. Bacterization with endospore-forming Bacillus sp. promotes plant growth and suppresses foot rot disease in black pepper (Piper nigrum L.) in the nursery. J Pure Appl Microbiol. 2023;17(2):768-79. https://doi.org/10.22207/JPAM.17.2.02
  31. 31. Xie L, Liu L, Luo Y, Rao X, Di Y, Liu H, et al. Complete genome sequence of biocontrol strain Bacillus velezensis YC89 and its biocontrol potential against sugarcane red rot. Front Microbiol. 2023;14:1180474. https://doi.org/10.3389/fmicb.2023.1180474
  32. 32. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2007;16:115-25. https://doi.org/10.1016/j.tim.2007.12.009
  33. 33. Meena KR, Kanwar S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. 2015;2015:473050. https://doi.org/10.1155/2015/473050
  34. 34. Li Y, Heloir MC, Zhang X, Geissler M, Trouvelot S, Jacquens L, et al. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defense stimulation. Mol Plant Pathol. 2019;20(8):1037-50. https://doi.org/10.1111/mpp.12809
  35. 35. Harish BN, Nagesha SN, Ramesh BN, Shyamalamma S, Nagaraj MS, Girish HC, et al. Molecular characterization and antifungal activity of lipopeptides produced from Bacillus subtilis against plant fungal pathogen Alternaria alternata. BMC Microbiol. 2023;23(1):179-83. https://doi.org/10.1186/s12866-023-02922-w
  36. 36. Asif M, Li-Qun Z, Zeng Q, Atiq M, Ahmad K, Tariq A, et al. Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pangenomic and genetic basis of biocontrol mechanism. Comput Struct Biotechnol J. 2023;21:4647-62. https://doi.org/10.1016/j.csbj.2023.09.043
  37. 37. Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S. Profiling of metabolites of Bacillus sp. and their application in sustainable plant growth promotion and biocontrol. Front Sustain Food Syst. 2021;5:605195. https://doi.org/10.3389/fsufs.2021.605195
  38. 38. Hassan MN, Afghan S, Hafeez U. Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. Biocontrol. 2010;55:531-42. https://doi.org/10.1007/s10526-010-9268-z
  39. 39. Varma Kishore P, Vijay Krishna Kumar K, Suresh M, Chandrasekhar V, Bharathalakshmi M, Jamuna P. Bacillus amyloliquefaciens (RB19): a potential PGPR in managing sugarcane red rot disease. J Pharm Phytochem. 2019;8:2255-61.
  40. 40. Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, et al. Multistress-tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem. 2020;151:640-9. https://doi.org/10.1016/j.plaphy.2020.04.016
  41. 41. Yamunarani K, Sangeetha S, Chitra K, Dhanalakshmi K, Dhanushkodi V. Developing biocontrol strategies for the management of sett rot disease of sugarcane under wider row planting. J Sci Res Rep. 2023;29(12):67-6. https://doi.org/10.9734/jsrr/2023/v29i121828
  42. 42. Pathak P, Rai VK, Can H, Singh SK, Kumar D, Bhardwaj N, et al. Plant-endophyte interaction during biotic stress management. Plants. 2022;11(17):2203. https://doi.org/10.3390/plants11172203

Downloads

Download data is not yet available.