Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Genome-wide association studies (GWAS) for resistance to Meloidogyne graminicola in an association panel of Oryza rufipogon

DOI
https://doi.org/10.14719/pst.10125
Submitted
18 June 2025
Published
10-01-2026

Abstract

The rice root-knot nematode (RRKN), Meloidogyne graminicola, is an obligate pathogen responsible for considerable yield losses in both upland and rainfed lowland rice cultivation in India. Identifying and mapping quantitative trait loci (QTLs) associated with resistance to M. graminicola could provide a sustainable and cost-effective management strategy for farmers. Genetic resources for resistance to M. graminicola are limited in Asian rice (Oryza sativa) cultivars. Therefore, a study was conducted to identify potential sources of resistance in wild rice. In this study, 93 accessions of Oryza rufipogon were screened for resistance to RRKN, alongside the susceptible check PR126, under artificial inoculation conditions over 2 years at the Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India. The evaluation of RRKN resistance was based on the root galling index (RGI), soil nematode population and reproduction factor (Rf). A genome-wide association study (GWAS) for RRKN traits identified significant associations for RGI on chromosomes 1, 2, 5, 6 and 11. For soil nematode population, significant associations were found on chromosomes 2, 4, 5, 6 and 7. Notably, QTLs on chromosomes 2 and 6 were consistently detected across traits and models, providing robust candidate regions for resistance. Among these, SNP S6_23144943 on chromosome 6 showed consistent association across all models and may represent a stable genetic source of resistance. These loci highlight the polygenic nature of resistance to M. graminicola in wild rice and represent valuable resources for marker-assisted breeding.

References

  1. 1. De Waele D, Elsen A. Challenges in tropical plant nematology. Annu Rev Phytopathol. 2007;45:457-85. https://doi.org/10.1146/annurev.phyto.45.062806.094438
  2. 2. Padgham JL, Duxbury JM, Mazid AM, Abawi GS, Hossain M. Yield losses caused by Meloidogyne graminicola on lowland rainfed rice in Bangladesh. J Nematol. 2004;36:42-8.
  3. 3. Bridge J, Plowright RA, Peng D. Nematode parasites of rice. In: Luc M, Sikora RA, Bridge J, editors. Plant parasitic nematodes in subtropical and tropical agriculture. 2nd ed. Wallingford: CABI Publ. 2005;87-130. https://doi.org/10.1079/9780851997278.0087
  4. 4. Win PP, Kyi PP, De Waele D. Effect of agro-ecosystem on the occurrence of the rice root-knot nematode Meloidogyne graminicola on rice in Myanmar. Australas Plant Pathol. 2011;40:187-96. https://doi.org/10.1007/s13313-011-0029-y
  5. 5. De Waele D, Das K, Zhao D, Tiwari RKS, Shrivastava DK, Vera-Cruz C, et al. Host response of rice genotypes to the root-knot nematode (Meloidogyne graminicola) under aerobic soil conditions. Arch Phytopathol Plant Prot. 2013;46(6):670-81. https://doi.org/10.1080/03235408.2012.749702
  6. 6. Tuong TP, Bouman BAM. Rice production in water-scarce environments. In: Kijne JW, Barker R, Molden D, editors. Water productivity in agriculture: limits and opportunities for improvement. Wallingford: CABI Int. 2003;53-7. https://doi.org/10.1079/9780851996691.0053
  7. 7. Ventura W, Watanabe I, Castillo MB, Dela CA. Involvement of nematodes in the soil sickness of a dryland rice-based cropping system. Soil Sci Plant Nutr. 1981;27:305-15. https://doi.org/10.1080/00380768.1981.10431285
  8. 8. Rahman ML. Effect of different cropping sequences on root-knot nematode, Meloidogyne graminicola and yield of deepwater rice. Nematol Mediterr. 1990;18:213-17.
  9. 9. Starr JL, Bridge J, Cook R. Resistance to plant-parasitic nematodes: history, current use and future potential. In: Starr JL, Bridge J, Cook R, editors. Plant resistance to parasitic nematodes. Wallingford: CABI Publ. 2002;1-22. https://doi.org/10.1079/9780851994666.0001
  10. 10. Plowright RA, Coyne DL, Nash P, Jones MP. Resistance to the rice nematodes Heterodera sacchari, Meloidogyne graminicola and M. incognita in Oryza glaberrima and O. glaberrima × O. sativa interspecific hybrids. Nematology. 1999;1:745-51. https://doi.org/10.1163/156854199508775
  11. 11. Cabasan MTN, Kumar A, De Waele D. Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes. Nematology. 2012;14:405-15. https://doi.org/10.1163/156854111X602613
  12. 12. Jena RN, Rao YS. Nature of resistance in rice (Oryza sativa L.) to the root-knot nematode (Meloidogyne graminicola) II. Mechanism of resistance. Proc Indian Acad Sci. 1977;86:31-8. https://doi.org/10.1007/BF03050895
  13. 13. Yik CP, Birchfield W. Host studies and reactions of rice cultivars to Meloidogyne graminicola. Phytopathol. 1979;69:497-9. https://doi.org/10.1094/Phyto-69-497
  14. 14. Sharma-Poudyal D, Pokharel RR, Shrestha SM, Khatri-Chhetri GB. Evaluation of common Nepalese rice cultivars against rice root-knot nematode. Nepal Agric Res J. 2004;5:33-6.
  15. 15. Dimkpa SON, Lahari Z, Shrestha R, Douglas A, Gheysen G, Price AH. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes. J Exp Bot. 2015;67(4):1191-200. https://doi.org/10.1093/jxb/erv470
  16. 16. Prasad JS, Vijayakumar CHM, Sankar M, Varaprasad KS, Prasad MS, Rao YK. Root-knot nematode resistance in advanced backcross populations of rice developed for water-stressed conditions. Nematol Mediterr. 2006;34:3-8.
  17. 17. Jones MP, Dingkuhn M, Aluko GK, Semon M. Interspecific Oryza sativa L. x O. glaberrima Steud progenies in upland rice improvement. Euphytica. 1997;92:237-46. https://doi.org/10.1023/A:1002969932224
  18. 18. Brar DS, Singh K. Wild crop relatives: genomic and breeding resources. Heidelberg: Springer Oryza. 2011;321-65. https://doi.org/10.1007/978-3-642-14228-4_7
  19. 19. Bhatia D, Joshi S, Das A, Vikal Y, Sahi GK, Neelam K, et al. Introgression of yield component traits in rice (Oryza sativa ssp. indica) through interspecific hybridization. Crop Sci. 2017;57(3):1557-73. https://doi.org/10.2135/cropsci2015.11.0693
  20. 20. Sekhon A, Dhillon NK, Bhatia D, Lore J, Buttar HS. Novel sources of combined resistance against rice root-knot nematode and brown spot disease in Oryza rufipogon. Rice Sci. 2023;30(6):504-8. https://doi.org/10.1016/j.rsci.2023.08.001
  21. 21. Cobb N. Estimating the nematode population of the soil. Agric Tech Circ U.S. Dept Agriculture. 1918;48 p.
  22. 22. Schindler AF. A simple substitute for a Baermann funnel. Plant Dis Rep. 1961;747-8.
  23. 23. Bhatti DS, Jain RK. Crop cultivars resistant to nematodes. In: Bhatti DS, Walia RK, editors. Nematode pest management in crops. Delhi: CBS Publ. 1994;215-27.
  24. 24. Malik P, Huang M, Neelam K, Bhatia D, Kaur R, Yadav B, et al. Genotyping-by-sequencing based investigation of population structure and genome-wide association studies for seven agronomically important traits in a set of 346 Oryza rufipogon accessions. Rice. 2022;15:37. https://doi.org/10.1186/s12284-022-00582-4
  25. 25. Wang J, Zhang Z. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform. 2021;19:1-12. https://doi.org/10.1016/j.gpb.2021.08.005
  26. 26. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203-8. https://doi.org/10.1038/ng1702
  27. 27. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12(3):e1005767. https://doi.org/10.1371/journal.pgen.1005767
  28. 28. Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola. BMC Genet. 2018;19:53. https://doi.org/10.1186/s12863-018-0656-1
  29. 29. Shrestha R, Uzzo F, Wilson MJ, Price AH. Physiological and genetic mapping study of tolerance to root-knot nematode in rice. New Phytol. 2007;176:665-72. https://doi.org/10.1111/j.1469-8137.2007.02185.x
  30. 30. Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola. BMC Genet. 2018;19(1):53. https://doi.org/10.1186/s12863-018-0656-1
  31. 31. Hada A, Dutta TK, Singh N, Singh B, Rai V, Singh NK, et al. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola. PLoS One. 2020;15(9):e0239085. https://doi.org/10.1371/journal.pone.0239085
  32. 32. Messeguer R, Ganal M, de Vicente MC, Young ND, Bolkan H, Tanksley SD. High-resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor Appl Genet. 1991;82:529-36. https://doi.org/10.1007/BF00226787
  33. 33. Ganal MW, Simon R, Brommonschenkel S, Arndt M, Phillips MS, Tanksley SD, et al. Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact. 1995;8:886-91. https://doi.org/10.1094/MPMI-8-0886
  34. 34. Veremis JC, Roberts PA. Diversity of heat-stable genotype-specific resistance to Meloidogyne in Maranon races of Lycopersicon peruvianum complex. Euphytica. 2000;111:9-16. https://doi.org/10.1023/A:1003776201585
  35. 35. Thurau T, Ye W, Cai D. Insect and nematode resistance. In: Kempken F, Jung C, editors. Genetic modification of plants. Biotechnol Agric For. 2010;64:177-97. https://doi.org/10.1007/978-3-642-02391-0_10
  36. 36. Devaraja KP, Ellur RK, Gowda APA, Singh AK, Ajaykumara KM. Wild relatives of rice are the treasure trove for resistance to the rice root-knot nematode, Meloidogyne graminicola. Nematology. 2025;1-21.
  37. 37. Kaur G, Dhillon NK, Singh G, Vikal Y, Kaur N, Gill AS, et al. Identification of Oryza glaberrima as a potential resistance source to rice root-knot nematode, Meloidogyne graminicola. Plant Genet Resour. 2023;21(5):432-42. https://doi.org/10.1017/S1479262123000965
  38. 38. Anil A, Johnson LW, Somvanshi VS. Molecular pathways involved in the interaction of rice plants with rice root-knot nematode Meloidogyne graminicola. Indian J Nematol. 2024;54(2):109-20. https://doi.org/10.5958/0974-4444.2024.00023.4
  39. 39. Dababat AA, Paulitz T, Laasli SE, Lahlali R, Li H, Mokrini F, et al. From genes to fields: marker-assisted selection for nematode resistance in crops. Biotechnol. 2005;3:1-18. https://doi.org/10.55627/pbiotech.003.01.1129
  40. 40. Altaf MT, Tatar M, Ali A, Liaqat W, Mortazvi P, Kayihan C, et al. Advancements in QTL mapping and GWAS application in plant improvement. Turk J Bot. 2024;48(7):376-426. https://doi.org/10.55730/1300-008X.2824
  41. 41. Galeng-Lawilao J, Swamy BM, Hore TK, Kumar A, De Waele D. Identification of quantitative trait loci underlying resistance and tolerance to the rice root-knot nematode, Meloidogyne graminicola, in Asian rice (Oryza sativa). Mol Breed. 2020;40(7):63. https://doi.org/10.1007/s11032-020-01137-5
  42. 42. Lorieux M, Reversat G, Diaz SXG, Denance C, Jouvenet N, Orieux Y, et al. Linkage mapping of Hsa-1Og, a resistance gene of African rice to the cyst nematode Heterodera sacchari. Theor Appl Genet. 2003;107:691-6. https://doi.org/10.1007/s00122-003-1285-1
  43. 43. Lahari Z, Ribeiro A, Talukdar P. QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice (Oryza sativa L.). Euphytica. 2019;215:117. https://doi.org/10.1007/s10681-019-2427-0

Downloads

Download data is not yet available.