Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Spatial and molecular characterization of root-knot nematodes (Meloidogyne) in Algerian vegetables: impact of soil and organic matter

DOI
https://doi.org/10.14719/pst.10146
Submitted
19 June 2025
Published
19-11-2025 — Updated on 04-12-2025
Versions

Abstract

In Algeria, several species of root-knot nematodes belonging to the genus Meloidogyne, including M. incognita, M. arenaria and M. javanica, have been identified. These parasites are widespread in coastal market gardening areas and Saharan regions, where they constitute a major phytosanitary constraint, particularly for tomato crops, due to the economic losses they cause. In this  survey of 369 greenhouses  Meloidogyne infestation was detected  in 168 greenhouses , with infestation  rates varying by region: 100 % in Beni Saf (Ain Temouchent) and 70 % in Tipaza, while some areas of Mostaganem, Oran and Biskra showed no infestation. Furthermore, a molecular analysis using the ITS rDNA marker identified the species Meloidogyne incognita with a similarity of 99.54 % compared to the NeMITG7 reference sequence deposited in the GenBank database. These results are reinforced by a statistical analysis revealing a highly significant negative correlation between the organic matter content and the gall index (Spearman's Rho = -0.651; P < 0.01). suggesting that soils rich in organic matter are less conducive to infestation. Moreover, soil type appears to be a determining factor: clay soils showed no infestation, unlike sandy soils which recorded the highest gall indices, with an average of 6.98. These results highlight the importance of soil type and its organic matter content in root-knot nematode management and provide a basis for developing  control strategies adapted to local conditions.

References

  1. 1. FAO. Production des fruits et légumes et sa part dans le monde [Internet]. 2004 [cité 2007 déc 9]. Disponible sur: http://www.fao.org/statistics/yearbook/vol_1_1/pdf/b03.pdf
  2. 2. Scotto La Massese JC. Aperçu sur les problèmes posés par les nématodes phytoparasites en Algérie. Assoc Coord Trav Agric FNHPC. 1962;83–105.
  3. 3. Ministère de l'Agriculture et du Développement Rural (MADR). Bulletin de la Production et Superficie agricole. Alger; 2015. 18 p.
  4. 4. Hammache M. Influence de quelques types de sols algériens sur le développement des nématodes à galles Meloidogyne incognita, M. javanica et M. arenaria. CNRS Liban. 2010a;11(2):47–60.
  5. 5. Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol. 2020;11:992. https://doi.org/10.3389/fmicb.2020.00992
  6. 6. Faria JMS, Cavaco T, Gonçalves D, Barbosa P, Teixeira DM, Moiteiro C, et al. First report on the synergistic interaction between essential oils against the pinewood nematode Bursaphelenchus xylophilus. Plants. 2023;12:2438. https://doi.org/10.3390/plants12132438
  7. 7. Churikova AK, Nekoval SN. Biological agents and their metabolites to control Meloidogyne spp. when growing vegetables (review). Ecol Dev. 2022;66:101–10. https://doi.org/10.18470/1992-1098-2022-3-175-186
  8. 8. Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene. 2012;492:19–31. https://doi.org/10.1016/j.gene.2011.10.040
  9. 9. Gálvez A, del Amor FM, Ros C, López-Marín J. New traits to identify physiological responses induced by different rootstocks after root-knot nematode inoculation (Meloidogyne incognita) in sweet pepper. Crop Prot. 2019;119:126–33. https://doi.org/10.1016/j.cropro.2019.01.026
  10. 10. Singh A, Sharma P, Kumari A, Kumar R, Pathak DV. Management of root-knot nematode in different crops using microorganisms. In: Varma A, Tripathi S, Prasad R, editors. Plant Biotic Interactions: State of the Art. Cham: Springer; 2019. p. 85–99. https://doi.org/10.1007/978-3-030-26657-8_6
  11. 11. Tazi H, Ait Hamza M, Hallouti A, Benjlil H, Idhmida A, Furze JN, et al. Biocontrol potential of nematophagous fungi against Meloidogyne spp. infecting tomato. Org Agric. 2021;11:63–75. https://doi.org/10.1007/s13165-020-00289-3
  12. 12. Khan A, Ali A, Fatima S, Siddiqui MA. Root-knot nematodes (Meloidogyne spp.): biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen. 2023;75(6):2187–205. https://doi.org/10.1007/s10343-023-00886-5
  13. 13. Vijayalaxmi B, Bhanothu V, Das VV, Padiya R, Venkateswarlu B. Meloidogyne species associated with different climatic conditions of the Sorghum bicolor production sites in Telangana, India. Adv Zool Bot. 2023;11(2):85–102. https://doi.org/10.13189/azb.2023.110201
  14. 14. Mokabli A. Principaux facteurs qui déterminent l'importance et l'agressivité des Meloidogyne sous-abris serres. Ann Inst Natl Agron. 1966;12(Suppl):202–19.
  15. 15. Sellami S, Lounici M, Eddoud A, Benseghir H. Distribution et plantes hôtes associées aux Meloidogyne sous abri plastique en Algérie. Nematol Mediterr. 1999;27:295–301.
  16. 16. Babaali D, Berrabah DE, Serghine R, Hammache M, Doumandji S. Comparative efficacy of two modes of applications of 1,3-dichloropropene in the control of root-knot nematodes on two varieties of tomato, pepper and some weeds. Adv Environ Biol. 2016;10(11):51–60.
  17. 17. Elhady A, Alghanmi L, Abd-Elgawad MMM, Heuer H, Saad MM, Hirt H. Plant-parasitic nematode research in the arid desert landscape: a systematic review of challenges and bridging interventions. Front Plant Sci. 2024;15:1432311. https://doi.org/10.3389/fpls.2024.1432311
  18. 18. Zaidat SAE. Distribution, identification et application d’une méthode alternative de lutte contre les nématodes à galles du genre Meloidogyne dans le littoral algérois [thèse de doctorat]. École Nationale Supérieure Agronomique, Algérie; 2021.
  19. 19. Benttoumi N, Colagiero M, Sellami S, Boureghda H, Keddad A, Ciancio A. Diversity of nematode microbial antagonists from Algeria shows occurrence of nematotoxic Trichoderma spp. Plants. 2020;9(8):941. https://doi.org/10.3390/plants9080941
  20. 20. Zoubi B, Essarioui A, Houari A, Lahlali R, Amraoui MB, Lakhal H. Occurrence and geographic distribution of plant-parasitic nematodes associated with citrus in Morocco. Life. 2022;12(6):872. https://doi.org/10.3390/life12060872
  21. 21. Zeck WM. A rating scheme for field evaluation of root-knot nematode infestation. Pflanzenschutz-Nachr. 1971;24:141–4.
  22. 22. Petard J. Les méthodes d’analyse: Tome 1 - Analyses de sols. Nouméa: ORSTOM; 1993.
  23. 23. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. https://doi.org/10.1073/pnas.74.12.5463
  24. 24. Chitwood DJ. Stratégies de lutte contre les nématodes basées sur les phytocomposés. Annu Rev Phytopathol. 2002;40:221–49. https://doi.org/10.1146/annurev.phyto.40.032602.130045
  25. 25. Hammache M. Bio-écologie des nématodes à galles du genre Meloidogyne sous serres en Algérie: amélioration des méthodes de lutte par la résistance culturale [thèse de doctorat]. École Nationale Supérieure Agronomique, Alger; 2012.
  26. 26. Bertrand C. Lutter contre les nématodes à galles en agriculture biologique. GRAB, ITAB.
  27. 27. Asif M, Rehman B, Parihar K, Ganai MA, Siddiqui MA. Effet de divers facteurs physico-chimiques sur l'incidence du nématode à galles Meloidogyne spp. infestant la tomate dans le district d'Aligarh (Uttar Pradesh), en Inde. J Plant Sci. 2015;10(6):234–43. https://doi.org/10.3923/jps.2015.234.243
  28. 28. Prot JC, Van Gundy SD. Influence of photoperiod and temperature on migrations of Meloidogyne juveniles. J Nematol. 1981;13(2):217–20.
  29. 29. El-Nagdi WMA, Youssef MMA, Abd El-Khair H, Abd-Elgawad MMM. Effect of certain organic amendments and Trichoderma species on the root-knot nematode, Meloidogyne incognita, infecting pea (Pisum sativum L.) plants. Egypt J Biol Pest Control. 2019;29(75). https://doi.org/10.1186/s41938-019-0182-0
  30. 30. Liu W, Yang Z, Ye Q, Peng Z, Zhu S, Chen H, et al. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants. 2023;12(22):23790. https://doi.org/10.3390/plants12223790
  31. 31. Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, et al. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microb Ecol. 2019;78:470–81. https://doi.org/10.1007/s00248-019-01319-5
  32. 32. Migunova V, Sasanelli N. Bacteria as biocontrol tool against phytoparasitic nematodes. Plants. 2021;10(2):389. https://doi.org/10.3390/plants10020389
  33. 33. Khanum TA, Mehmood N, Khatoon N. Nematodes as biological indicators of soil quality in agroecosystems. IntechOpen. 2021. https://doi.org/10.5772/intechopen.99745
  34. 34. Contreras-Soto MB, Tovar-Pedraza JM, Solano-Báez AR, Bayardo-Rosales H, Márquez-Licona G. Biocontrol strategies against plant-parasitic nematodes using Trichoderma spp.: mechanisms, applications and management perspectives. J Fungi. 2025;11(7):517. https://doi.org/10.3390/jof11070517
  35. 35. d’Errico G, Greco N, Vinale F, Marra R, Stillittano V, Davino SW, et al. Synergistic effects of Trichoderma harzianum, 1,3-dichloropropene and organic matter in controlling the root-knot nematode Meloidogyne incognita on tomato. Plants. 2022;11(21):2890. https://doi.org/10.3390/plants11212890

Downloads

Download data is not yet available.