Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

An integrative multivariate and clustering analysis dissecting genetic variability in bread wheat (Triticum aestivum L.)

DOI
https://doi.org/10.14719/pst.10153
Submitted
20 June 2025
Published
24-09-2025
Versions

Abstract

A detailed investigation was conducted to assess analysis of variance, genetic divergence, correlation and principal component analysis (PCA) among 381 wheat genotypes from the ICAR-NBPGR Core Collection with three local cultivated varieties. We analyzed 12 agro-morphological traits, yielding clear and significant results. The analysis of variance clearly shows that the treatments have a significant effect on almost all traits. High Genotypic Coefficient of variation observed for yield-related traits and high heritability observed among spike length, days to 50 % flowering and plant height. For grain yield and the number of grains per spike, a positive correlation was observed. The PCA results indicated that the first and second principal components (PC-1 and PC-2) have eigenvalues greater than one, accounting for an impressive 50.73 % of the total variability. Notably, for PC-2 exhibited strong positive loadings for both 1000-grain weight and grain yield. The cluster analysis distinctly categorized the genotypes into eight separate clusters using Euclidean distance, identifying the greatest genetic distance between Cluster V and Cluster III.

References

  1. 1. FAO. Publications. 2024. https://www.fao.org/publications
  2. 2. Kormoczi P, Toth B, Nagy-Gyorgy A, Kocsis K, Ovari J, Szabo B, et al. SNP based genetic diversity assessment among Hungarian bread wheat (Triticum aestivum L.) genotypes. Cereal Res Commun. 2020;48(1):1–7. https://doi.org/10.1007/s42976-019-00005-z
  3. 3. Ahmad F, Khan S, Latif A, Khan H, Khan A, Nawaz A. Genetics of yield and related traits in bread wheat over different planting dates using diallel analysis. Afr J Agric Res. 2011;6(8):1564–71. https://doi.org/10.5897/AJAR11.1801
  4. 4. Khalid A, Hammed A. Genetic divergence in wheat genotypes based on seed biochemical profiles appraised through agglomerative hierarchical clustering and association analysis among traits. Pak J Bot. 2021;53(4):1281–6. https://doi.org/10.30848/PJB2021-4(7)
  5. 5. Singh PK, Singh L, Singh SV, Nath S, Yadav V, Mishra A, et al. Estimation of genetic variability, correlation and path analysis for yield and some yield contributing traits in bread wheat (Triticum aestivum L.). Int J Environ Climate Change. 2023;13:2429–40. https://doi.org/10.9734/ijecc/2023/v13i113409
  6. 6. Krishna S, Upadhyay P, Mishra VK, Yadav PKM, Singh P, Ashutosh SS, et al. Evaluation of terminal heat tolerance in bread wheat (Triticum aestivum L.). Indian J Hum Genet. 2020;8(4):468–70.
  7. 7. Upadhyay P, Gupta M, Sra SK, Sharda R, Sharma S, Sardana VK, et al. Genome-wide association studies for acid phosphatase activity at varying phosphorus levels in Brassica juncea L. Front Plant Sci. 2022;13:105602. https://doi.org/10.3389/fpls.2022.105602
  8. 8. Khan FUZ, Rehman SU, Ali MA, Waqas M, Chaudhry MH, Bilal M, et al. Exploitation of germplasm for plant yield improvement in cotton (Gossypium hirsutum L.). J Green Physiol Genet Genomics. 2015;1:1–10.
  9. 9. Khodarahmpour Z, Choukan R, Bihamta MR, Hervan E. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions. J Agric Sci Technol. 2011;13:111–21.
  10. 10. Malik R, Sharma H, Sharma I, Kundu S, Verma A, Sheoran S, et al. Genetic diversity of agro-morphological characters in Indian wheat varieties using GT biplot. Aust J Crop Sci. 2014;8:1266.
  11. 11. Aharizad S, Sabzi M, Mohammadi SA, Khodadadi E. Multivariate analysis of genetic diversity in wheat (Triticum aestivum L.) recombinant inbred lines using agronomic traits. Ann Biol Res. 2012;3(5):2118–26.
  12. 12. Khodadadi M, Fotokian MH, Miransari M. Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust J Crop Sci. 2011;5(1):17–24.
  13. 13. Aravind J, Sankar SM, Wankhede DP, Kaur V. augmentedRCBD: Analysis of augmented randomised complete block designs [software]. 2023. https://doi.org/10.5281/zenodo.8015094
  14. 14. Wei T, Simko V. corrplot: Visualization of a Correlation Matrix. R package version 0.92; 2021. Available from: https://CRAN.R-project.org/package=corrplot
  15. 15. R Core Team. stats: Statistical Functions. R package version 4.3.2; 2023. In: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  16. 16. Husson F, Josse J, Le S, Mazet J. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R package version 2.4; 2020. Available from: https://CRAN.R-project.org/package=FactoMineR
  17. 17. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4; 2023. Available from: https://CRAN.R-project.org/package=cluster
  18. 18. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7; 2020. Available from: https://CRAN.R-project.org/package=factoextra
  19. 19. Galili T. dendextend: Extending ‘dendrogram’ Functionality in R. R package version 1.13.4; 2015. Available from: https://CRAN.R-project.org/package=dendextend
  20. 20. Mahalanobis PC. On the generalized distance in statistics. Proc Natl Inst Sci (Calcutta). 1936;2:49–55.
  21. 21. Sharma G, Singh V, Singh KP, Tiwari A, Singh V, Patel A. Assessing Genetic Variability and Heritability in Wheat [Triticum aestivum L.]. Int J Curr Microbiol App Sci. 2020;11:477–82.
  22. 22. Sewore BM, Abe A. Genetic variability and trait associations in bread wheat (Triticum aestivum L.) genotypes under drought stressed and well watered conditions. CABI Agric Biosci. 2024;5(1):64. https://doi.org/10.1186/s43170-024-00259-6
  23. 23. Zubair M, Akhtar LH, Minhas R, Jahan Bukhari MS, Hussain S, Rehman M, et al. The performance of potential wheat genotypes across diverse environments of Pakistan. Pak J Agric Sci. 2021;58(6). https://doi.org/10.21162/PAKJAS/21.1226
  24. 24. Desheva GN, Deshev MG. Correlation and path coefficient analyses of grain yield and its related components for some common winter wheat genotypes. Agric Sci/Agrarni Nauki. 2021;13(31). https://doi.org/10.22620/agrisci.2021.31.005
  25. 25. Mecha B, Alamerew S, Assefa A, Dutamo D. Correlation and path coefficient studies of yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes. Adv Plants Agric Res. 2017;6(5):128–36. https://doi.org/10.15406/apar.2017.06.00226
  26. 26. Das A, Das A, Muntaha S, Akhter S, Sagor GS. Genetic variability, correlation and path analysis of yield and yield contributing characters in wheat (Triticum aestivum L.) under normal and terminal heat stress condition. Fundam Appl Agric. 2024;9(2):65–71. https://doi.org/10.5455/faa.187752
  27. 27. Uddin F, Mohammad F, Ahmed S. Genetic divergence in wheat recombinant inbred lines for yield and yield components. Acad J Agric Res. 2015;3:303–7.
  28. 28. Baloch AW, Baloch M, Baloch IA, Mari SN, Mandan DK, Abro SA. Association and path analysis in advance Pakistani bread wheat genotypes. Pure Appl Biol. 2014;3:115–20.
  29. https://doi.org/10.19045/bspab.2014.33005
  30. 29. Pradhan B, Upadhyay P, Singh SK, Yadav PK, Krishna B. Dissecting the Genetic Variability in Wheat (Triticum aestivum L.) Genotypes Using Univariate and Multivariate Statistical Approaches. Biopestic Int. 2024;20(2). https://doi.org/10.59467/BI.2024.20.295
  31. 30. Zewdu D, Mekonnen F, Geleta N. Correlation and path analysis for yield and yield component traits on bread wheat (Triticum aestivum L.) genotypes. Int J Bio-Res Stress Manag. 2024;15(1):1–3. https://doi.org/10.23910/1.2024.5040
  32. 31. Tiwari S, Singh B. Correlation and path coefficient analysis among yield and yield attributing traits of wheat (Triticum aestivum L.) genotypes. J Cereal Res. 2024;16(3):325–30. https://doi.org/10.25174/2582-2675/2024
  33. 32. Wani SH, Sheikh FA, Najeeb S, et al. Genetic variability study in bread wheat (Triticum aestivum L.) under temperate conditions. Curr Agric Res J. 2018;6(3):268–77. https://doi.org/10.12944/CARJ.6.3.06
  34. 33. Goel S, Singh M, Grewal S, Razzaq A, Wani SH. Wheat proteins: a valuable resource to improve nutritional value of bread. Front Sustain Food Syst. 2021;5:425. https://doi.org/10.3389/fsufs.2021.769681
  35. 34. Ajmal SU, Minhas NM, Hamdani A, Shakir A, Zubair M, Ahmad Z. Multivariate analysis of genetic divergence in wheat (Triticum aestivum) germplasm. Pak J Bot. 2013;45:1643–8.
  36. 35. Adilova S, Qulmamatova D, Baboev S, Bozorov T, Morgunov A. Multivariate cluster and principle component analyses of selected yield traits in Uzbek bread wheat cultivars. Am J Plant Sci. 2020;11:903–12. https://doi.org/10.4236/ajps.2020.116066
  37. 36. Fellahi ZEA, Boubellouta T, Hannachi A, Belguet H, Louahdi N, Benmahammed A, et al. Exploitation of the genetic variability of diverse metric traits of durum wheat (Triticum turgidum L. ssp. durum Desf.) cultivars for local adaptation to semi-arid regions of Algeria. Plants. 2024;13(7):934. https://doi.org/10.3390/plants13070934

Downloads

Download data is not yet available.