Research Articles
Early Access
Unraveling drought tolerance in spray chrysanthemum through multivariate analysis under hydroponic and pot culture conditions
Division of Floriculture and Landscaping, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Division of Floriculture and Landscaping, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Division of Floriculture and Landscaping, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Division of Floriculture and Landscaping, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Division of Floriculture and Landscaping, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
ICAR-National Institute of Plant Biotechnology, New Delhi 110 012, India
Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
Abstract
Drought affects chrysanthemum growth and yield, highlighting the need for reliable indicators of tolerance. This study evaluated 68 genetically diverse genotypes under hydroponics and pot culture using a completely randomized design to identify key physiological, biochemical and morphological traits linked to drought adaptation. Stress was imposed with 10 % polyethylene glycol (PEG) in hydroponics at the seedling stage and 60 kPa soil moisture tension in pots for 10 days at the vegetative stage based on our preliminary studies. Traits measured included chlorophyll content, carotenoids, relative water content (RWC), membrane stability index (MSI), canopy temperature depression (CTD), chlorophyll fluorescence, biomass and reproductive parameters. Correlation analysis revealed strong positive associations among chlorophyll content, RWC, MSI, CTD and fluorescence, suggesting coordinated mechanisms that preserve photosynthetic efficiency and cellular stability. Principal component analysis (PCA) identified chlorophyll b, fluorescence, biomass and reproductive traits as major contributors to phenotypic variation. The first few PCs explained 71.0 % variation in hydroponic control, 75.5 % in hydroponic stress, 61.6 % in pot control and 77.9 % in pot stress, indicating context-dependent adaptive strategies. Under hydroponic stress, chlorophyll a, total chlorophyll, biomass, chlorophyll b and carotenoids contributed strongly to both PC1 and PC2, with Punjab Singar, Violet, Gulmohar, Garden Beauty and Shwet excelling in these traits, while Autumn Joy and Naughty White were distinguished by flowers per plant and chlorophyll a/b. In contrast, under pot stress, no trait contributed simultaneously to both PCs. Overall, chlorophyll content, RWC, MSI, CTD, chlorophyll fluorescence and reproductive traits emerged as robust indicators for breeding drought-resilient chrysanthemum cultivars.
References
- 1. Umar OB, Ranti LA, Abdulbaki AS, Bola AUL, Abdulhamid AK, Biola MR, et al. Stresses in plants: Biotic and abiotic. In: Current trends in wheat research. London: IntechOpen; 2021. https://doi.org/10.5772/intechopen.100501
- 2. Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10(2):259. https://doi.org/10.3390/plants10020259
- 3. Chen Q, Gao K, Xu Y, Sun Y, Pan B, Chen D, et al. Research advance on cold tolerance in chrysanthemum. Front Plant Sci. 2023;14:1259229. https://doi.org/10.3389/fpls.2023.1259229
- 4. Zhang Y, Gu J, Xia X, Zeng J, Sun H, Chen F, et al. Contrasting responses to drought stress between Chrysanthemum japonense and C. nankingense. Ornam Plant Res. 2022;2(1):1-11. https://doi.org/10.48130/OPR-2022-0016
- 5. Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, et al. Improving drought stress tolerance in ramie (Boehmeria nivea L.) using molecular techniques. Front Plant Sci. 2022;13:911610. https://doi.org/10.3389/fpls.2022.911610
- 6. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Horticulturae. 2021;7(3):50. https://doi.org/10.3390/horticulturae7030050
- 7. Limbu AK, Dhami A, Rawal JS, RC P, Mandal A, Awasthi R, et al. Assessment of drought tolerance in different rice genotypes during germination and early growth stages by using polyethylene glycol-6000. Int J Appl Sci Biotechnol. 2024;12(4):194-200. https://doi.org/10.3126/ijasbt.v12i4.73010
- 8. Reyes JAO, Casas DE, Gandia JL, Parducho MJL, Renovalles EM, Quilloy EP, et al. Polyethylene glycol-induced drought stress screening of selected Philippine high-yielding sugarcane varieties. J Agric Food Res. 2023;14:100676. https://doi.org/10.1016/j.jafr.2023.100676
- 9. Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought tolerance in plants: Physiological and molecular responses. Plants. 2024;13(21):2962. https://doi.org/10.3390/plants13212962
- 10. González-Espíndola M, García-Ruiz H, Acosta-Gallegos JA, Molina-Cano JL, García-Moya E, Terán H, et al. High-throughput phenotyping reveals multiple drought responses of common bean (Phaseolus vulgaris L.). Front Plant Sci. 2024;15:1385985. https://doi.org/10.3389/fpls.2024.1385985
- 11. Bian Z, Wang Y, Zhang Y, Wang Y, Li T. A transcriptome analysis revealing the new insight of green light-induced drought tolerance in tomato seedlings. Front Plant Sci. 2021;12:649283. https://doi.org/10.3389/fpls.2021.649283
- 12. Sánchez-Reinoso AD, Ligarreto-Moreno GA, Restrepo-Díaz H. Evaluation of drought indices to identify tolerant genotypes in bush bean (Phaseolus vulgaris L.). J Integr Agric. 2019;18(2):391-401. https://doi.org/10.1016/S2095-3119(19)62620-1
- 13. Jarin AS, Islam MM, Rahat A, Ahmed S, Ghosh P, Murata Y. Drought stress tolerance in rice: Physiological and biochemical insights. Int J Plant Biol. 2024;15(3):692-718. https://doi.org/10.3390/ijpb15030051
- 14. Sruthi SR, Kumar LN, Kishore K, Johnny SI, Anbuselvam Y. Principal component analysis in rice (Oryza sativa L.) varieties for three seasons in Annamalai Nagar, an east coast region of Tamil Nadu. Plant Sci Today. 2024;11(4). https://doi.org/10.14719/pst.4105
- 15. Taiz L, Zeiger E. Plant physiology. 3rd ed. Sunderland, Massachusetts: Sinauer Associates; 2002.
- 16. Lieth JH, Burger DW. Growth of chrysanthemum plants under various soil water potentials. J Am Soc Hortic Sci. 1989;114(3):387-92.
- 17. Katsoulas N, Baille A, Kittas C, Rigakis N. Infrared thermometry for early detection of drought stress in chrysanthemum. Acta Hortic. 2006;719:93-100.
- 18. Marcum KB, Anderson SJ, Engelke MC. Salt gland ion secretion: A salinity tolerance mechanism among five zoysia grass species. Crop Sci. 1998;38:1414. https://doi.org/10.2135/cropsci1998.0011183X003800030031x
- 19. Barrs HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci. 1962;15:413-28.
- 20. Arnon JD. Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1-15.
- 21. Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57:1332-4.
- 22. Lepekhov SB. Canopy temperature depression for drought- and heat stress tolerance in wheat breeding. Vavilov J Genet Breed. 2022;26(2):196-201. https://doi.org/10.18699/VJGB-22-24
- 23. Huang X, Wang J, Wang Q, Hu W, Wang S, Zhou Z. Exploring the potential of chlorophyll a fluorescence for detecting phosphorus status in cotton leaves (Gossypium hirsutum L.) to optimize phosphorus management in cotton production. Ind Crops Prod. 2025;225:120561. https://doi.org/10.1016/j.indcrop.2025.120561
- 24. Protection of Plant Varieties and Farmers' Rights Authority (PPV&FRA). Guidelines for the conduct of test for distinctiveness, uniformity and stability on chrysanthemum. New Delhi: Government of India; 2010. p.1-66.
- 25. Daler S, Kaya Ö, Cantürk S, Korkmaz N, Kılıç T, Karadağ A, et al. Silicon nanoparticles (SiO₂ NPs) boost drought tolerance in grapevines by enhancing some morphological, physiological and biochemical traits. Plant Mol Biol Rep. 2025;43:1057-75. https://doi.org/10.1007/s11105-024-01520-y
- 26. Rosmaina R, Ridho A, Zulfahmi Z. Response of morpho-physiological traits to drought stress and screening of curly pepper (Capsicum annuum) genotypes for drought tolerance. Biodiversitas. 2022;23:5469-80. https://doi.org/10.13057/biodiv/d231059
- 27. Toscano S, Romano D. Morphological, physiological and biochemical responses of zinnia to drought stress. Horticulturae. 2021;7(10):362. https://doi.org/10.3390/horticulturae7100362
- 28. Katuwal KB, Yang H, Huang B. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging. Grass Res. 2023. https://doi.org/10.48130/GR-2023-0016
- 29. Sun Z, Yin Y, Zhu W, Zhao Y. Morphological, physiological and biochemical composition of mulberry (Morus spp.) under drought stress. Forests. 2023;14(5):949. https://doi.org/10.3390/f14050949
- 30. Wang F, Chen X, Huang Z, Wei L, Wang J, Wen S, et al. Phenotypic characterization and marker-trait association analysis using SCoT markers in chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm. Genes. 2025;16(6):664. https://doi.org/10.3390/genes16060664
- 31. Kamal S, Rana A, Devi R, Kumar R, Yadav N, Chaudhari AA, et al. Stability assessment of selected chrysanthemum (Dendranthema grandiflora Tzvelev) hybrids over the years through AMMI and GGE biplot in the mid hills of North-Western Himalayas. Sci Rep. 2024;14(1):14170. https://doi.org/10.1038/s41598-024-61994-4
- 32. Ranjan R, Yadav R, Gaikwad K, Kumar M, Kumar N, Babu P, et al. Genetic variability for root traits and its role in adaptation under conservation agriculture in spring wheat. Indian J Genet Plant Breed. 2021;81(1):24-33. https://doi.org/10.31742/IJGPB.81.1.2
Downloads
Download data is not yet available.