Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Unraveling drought tolerance in spray chrysanthemum through multivariate analysis under hydroponic and pot culture conditions

DOI
https://doi.org/10.14719/pst.10174
Submitted
21 June 2025
Published
25-11-2025

Abstract

Drought affects chrysanthemum growth and yield, highlighting the need for reliable indicators of tolerance. This study evaluated 68 genetically diverse genotypes under hydroponics and pot culture using a completely randomized design to identify key physiological, biochemical and morphological traits linked to drought adaptation. Stress was imposed with 10 % polyethylene glycol (PEG) in hydroponics at the seedling stage and 60 kPa soil moisture tension in pots for 10 days at the vegetative stage based on our preliminary studies. Traits measured included chlorophyll content, carotenoids, relative water content (RWC), membrane stability index (MSI), canopy temperature depression (CTD), chlorophyll fluorescence, biomass and reproductive parameters. Correlation analysis revealed strong positive associations among chlorophyll content, RWC, MSI, CTD and fluorescence, suggesting coordinated mechanisms that preserve photosynthetic efficiency and cellular stability. Principal component analysis (PCA) identified chlorophyll b, fluorescence, biomass and reproductive traits as major contributors to phenotypic variation. The first few PCs explained 71.0 % variation in hydroponic control, 75.5 % in hydroponic stress, 61.6 % in pot control and 77.9 % in pot stress, indicating context-dependent adaptive strategies. Under hydroponic stress, chlorophyll a, total chlorophyll, biomass, chlorophyll b and carotenoids contributed strongly to both PC1 and PC2, with Punjab Singar, Violet, Gulmohar, Garden Beauty and Shwet excelling in these traits, while Autumn Joy and Naughty White were distinguished by flowers per plant and chlorophyll a/b. In contrast, under pot stress, no trait contributed simultaneously to both PCs. Overall, chlorophyll content, RWC, MSI, CTD, chlorophyll fluorescence and reproductive traits emerged as robust indicators for breeding drought-resilient chrysanthemum cultivars.

References

  1. 1. Umar OB, Ranti LA, Abdulbaki AS, Bola AUL, Abdulhamid AK, Biola MR, et al. Stresses in plants: Biotic and abiotic. In: Current trends in wheat research. London: IntechOpen; 2021. https://doi.org/10.5772/intechopen.100501
  2. 2. Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10(2):259. https://doi.org/10.3390/plants10020259
  3. 3. Chen Q, Gao K, Xu Y, Sun Y, Pan B, Chen D, et al. Research advance on cold tolerance in chrysanthemum. Front Plant Sci. 2023;14:1259229. https://doi.org/10.3389/fpls.2023.1259229
  4. 4. Zhang Y, Gu J, Xia X, Zeng J, Sun H, Chen F, et al. Contrasting responses to drought stress between Chrysanthemum japonense and C. nankingense. Ornam Plant Res. 2022;2(1):1-11. https://doi.org/10.48130/OPR-2022-0016
  5. 5. Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, et al. Improving drought stress tolerance in ramie (Boehmeria nivea L.) using molecular techniques. Front Plant Sci. 2022;13:911610. https://doi.org/10.3389/fpls.2022.911610
  6. 6. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Horticulturae. 2021;7(3):50. https://doi.org/10.3390/horticulturae7030050
  7. 7. Limbu AK, Dhami A, Rawal JS, RC P, Mandal A, Awasthi R, et al. Assessment of drought tolerance in different rice genotypes during germination and early growth stages by using polyethylene glycol-6000. Int J Appl Sci Biotechnol. 2024;12(4):194-200. https://doi.org/10.3126/ijasbt.v12i4.73010
  8. 8. Reyes JAO, Casas DE, Gandia JL, Parducho MJL, Renovalles EM, Quilloy EP, et al. Polyethylene glycol-induced drought stress screening of selected Philippine high-yielding sugarcane varieties. J Agric Food Res. 2023;14:100676. https://doi.org/10.1016/j.jafr.2023.100676
  9. 9. Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought tolerance in plants: Physiological and molecular responses. Plants. 2024;13(21):2962. https://doi.org/10.3390/plants13212962
  10. 10. González-Espíndola M, García-Ruiz H, Acosta-Gallegos JA, Molina-Cano JL, García-Moya E, Terán H, et al. High-throughput phenotyping reveals multiple drought responses of common bean (Phaseolus vulgaris L.). Front Plant Sci. 2024;15:1385985. https://doi.org/10.3389/fpls.2024.1385985
  11. 11. Bian Z, Wang Y, Zhang Y, Wang Y, Li T. A transcriptome analysis revealing the new insight of green light-induced drought tolerance in tomato seedlings. Front Plant Sci. 2021;12:649283. https://doi.org/10.3389/fpls.2021.649283
  12. 12. Sánchez-Reinoso AD, Ligarreto-Moreno GA, Restrepo-Díaz H. Evaluation of drought indices to identify tolerant genotypes in bush bean (Phaseolus vulgaris L.). J Integr Agric. 2019;18(2):391-401. https://doi.org/10.1016/S2095-3119(19)62620-1
  13. 13. Jarin AS, Islam MM, Rahat A, Ahmed S, Ghosh P, Murata Y. Drought stress tolerance in rice: Physiological and biochemical insights. Int J Plant Biol. 2024;15(3):692-718. https://doi.org/10.3390/ijpb15030051
  14. 14. Sruthi SR, Kumar LN, Kishore K, Johnny SI, Anbuselvam Y. Principal component analysis in rice (Oryza sativa L.) varieties for three seasons in Annamalai Nagar, an east coast region of Tamil Nadu. Plant Sci Today. 2024;11(4). https://doi.org/10.14719/pst.4105
  15. 15. Taiz L, Zeiger E. Plant physiology. 3rd ed. Sunderland, Massachusetts: Sinauer Associates; 2002.
  16. 16. Lieth JH, Burger DW. Growth of chrysanthemum plants under various soil water potentials. J Am Soc Hortic Sci. 1989;114(3):387-92.
  17. 17. Katsoulas N, Baille A, Kittas C, Rigakis N. Infrared thermometry for early detection of drought stress in chrysanthemum. Acta Hortic. 2006;719:93-100.
  18. 18. Marcum KB, Anderson SJ, Engelke MC. Salt gland ion secretion: A salinity tolerance mechanism among five zoysia grass species. Crop Sci. 1998;38:1414. https://doi.org/10.2135/cropsci1998.0011183X003800030031x
  19. 19. Barrs HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci. 1962;15:413-28.
  20. 20. Arnon JD. Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1-15.
  21. 21. Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57:1332-4.
  22. 22. Lepekhov SB. Canopy temperature depression for drought- and heat stress tolerance in wheat breeding. Vavilov J Genet Breed. 2022;26(2):196-201. https://doi.org/10.18699/VJGB-22-24
  23. 23. Huang X, Wang J, Wang Q, Hu W, Wang S, Zhou Z. Exploring the potential of chlorophyll a fluorescence for detecting phosphorus status in cotton leaves (Gossypium hirsutum L.) to optimize phosphorus management in cotton production. Ind Crops Prod. 2025;225:120561. https://doi.org/10.1016/j.indcrop.2025.120561
  24. 24. Protection of Plant Varieties and Farmers' Rights Authority (PPV&FRA). Guidelines for the conduct of test for distinctiveness, uniformity and stability on chrysanthemum. New Delhi: Government of India; 2010. p.1-66.
  25. 25. Daler S, Kaya Ö, Cantürk S, Korkmaz N, Kılıç T, Karadağ A, et al. Silicon nanoparticles (SiO₂ NPs) boost drought tolerance in grapevines by enhancing some morphological, physiological and biochemical traits. Plant Mol Biol Rep. 2025;43:1057-75. https://doi.org/10.1007/s11105-024-01520-y
  26. 26. Rosmaina R, Ridho A, Zulfahmi Z. Response of morpho-physiological traits to drought stress and screening of curly pepper (Capsicum annuum) genotypes for drought tolerance. Biodiversitas. 2022;23:5469-80. https://doi.org/10.13057/biodiv/d231059
  27. 27. Toscano S, Romano D. Morphological, physiological and biochemical responses of zinnia to drought stress. Horticulturae. 2021;7(10):362. https://doi.org/10.3390/horticulturae7100362
  28. 28. Katuwal KB, Yang H, Huang B. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging. Grass Res. 2023. https://doi.org/10.48130/GR-2023-0016
  29. 29. Sun Z, Yin Y, Zhu W, Zhao Y. Morphological, physiological and biochemical composition of mulberry (Morus spp.) under drought stress. Forests. 2023;14(5):949. https://doi.org/10.3390/f14050949
  30. 30. Wang F, Chen X, Huang Z, Wei L, Wang J, Wen S, et al. Phenotypic characterization and marker-trait association analysis using SCoT markers in chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm. Genes. 2025;16(6):664. https://doi.org/10.3390/genes16060664
  31. 31. Kamal S, Rana A, Devi R, Kumar R, Yadav N, Chaudhari AA, et al. Stability assessment of selected chrysanthemum (Dendranthema grandiflora Tzvelev) hybrids over the years through AMMI and GGE biplot in the mid hills of North-Western Himalayas. Sci Rep. 2024;14(1):14170. https://doi.org/10.1038/s41598-024-61994-4
  32. 32. Ranjan R, Yadav R, Gaikwad K, Kumar M, Kumar N, Babu P, et al. Genetic variability for root traits and its role in adaptation under conservation agriculture in spring wheat. Indian J Genet Plant Breed. 2021;81(1):24-33. https://doi.org/10.31742/IJGPB.81.1.2

Downloads

Download data is not yet available.