Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phenotypic characterization and genetic diversity studies of finger millet (Eleusine coracana (L.) Gaertn) germplasms

DOI
https://doi.org/10.14719/pst.10183
Submitted
23 June 2025
Published
25-11-2025

Abstract

Eleusine coracana (L.) Gaertn, also known as ragi, is one of the most important millet crops, cultivated across many parts of India. It is well known for its climate resilience and drought tolerance capacity. In the recent years, finger millet is gaining popularity due to its nutritional status and as a measure of crop diversification for small and marginalized farmers. This study was undertaken with the objective to identify various traits that could potentially help in yield enhancement directly or indirectly. During the Kharif, 2022 the experiment was undertaken in a randomized block design (RBD) with three replications. Eight significantly important traits like days to 50 % flowering, days to maturity, plant height, ear length, number of fingers per ear, number of ears per plant, test weight and yield per plant were recorded. Higher mean performance across the majority of traits under study was exhibited by genotypes like Mut-4, G30-GN-2-2, VR-849 and VR-822. Correlation analysis showed a strong and positive association between the number of ears per plant and grain yield, indicating that selecting plants with
more ears could potentially increase yield. Path coefficient study showed that the number of ears per plant had the highest direct positive effect on grain yield, followed by the number of days till 50 % flowering. The Mahalanobis D2 analysis, grouped the genotypes into five groups; the maximum genetic divergence was found in clusters IV and V (D2 = 219.92). This suggests a potential opportunity to select parents with diverse genetic backgrounds for future hybridisation attempts. This study provides valuable findings to improve yield potential of finger millet and enhance crop improvement programmes selection of suitable parents.

References

  1. 1. D’Andrea C, Lyons D, Haile M, Butler A. Ethnoarchaeological approaches to the study of prehistoric agriculture in the highlands of Ethiopia. In: Marijke van der Veen, editor. The exploitation of plant resources in ancient Africa; 1999. p. 101-22. https://doi.org/10.1007/978-1-4757-6730-8_10
  2. 2. Ramashia SE, Anyasi TA, Gwata ET, Meddows-Taylor S, Jideani AI. Processing, nutritional composition and health benefits of finger millet in sub-Saharan Africa. Food Science and Technology. 2019;39:253-66. https://doi.org/10.1590/fst.25017
  3. 3. Bhatt A, Singh V, Shrotria PK, Baskheti DC. Coarse grains of Uttaranchal: ensuring sustainable food and nutritional security. Indian Farmer’s Digest. 2003;7(1):34-8.
  4. 4. Singh P, Srivastava S. Nutrient composition of some new varieties of finger millet (Eleusine coracana). Journal of Community Mobilization and Sustainable Development. 2006;1(1-2):115-20.
  5. 5. ICAR. Indian Institute of Millets Research (IIMR) [Internet]. [cited 2025 Jun 19]. Available from: https://www.millets.res.in/
  6. 6. Sharma N, Bandyopadhyay BB, Chand S, Pandey PK, Baskheti DC, Malik A, Chaudhary R. Determining selection criteria in finger millet (Eleusine coracana) genotypes using multivariate analysis. The Indian Journal of Agricultural Sciences. 2022;92(6):763-8. https://doi.org/10.56093/ijas.v92i6.118939
  7. 7. Nagaraja TE, Bhat S, Nandini C, Saritha HS, Parveen SG. A multivariate approach to assess the genetic diversity in finger millet [Eleusine coracana (L.) Gaertn.] germplasm accessions. EJPB. 2023;14(4):1317-29.
  8. 8. Eric MO, Pangirayi T, Paul S, Mwangi G, Abhishek R. Correlations, path coefficient analysis and heritability for quantitative traits in finger millet landraces. Philipp J Sci. 2016;145(2):197-208.
  9. 9. Shinde SR, Desai SV, Pawar RM. Genetic variability and character association in finger millet [Eleusine coracana (L.) Gaertn]. Int J Plant Sci. 2014;9(1):13-6.
  10. 10. Devaliya SD, Singh M, Intawala CG, Bhagora RN. Genetic variability studies in finger millet [Eleusine coracana (L.) Gaertn]. Int J Pure App Biosci. 2018;6(1):1007-11.
  11. 11. Madhavilatha L, Sudhakar P, Latha P, Shanthi Priya M, Hemanth Kumar M. Studies on genetic variability, correlation and path analysis for quantitative traits in finger millet. J Pharm Innov. 2021;10(6):709-12.
  12. 12. Suman A, Surin S, Ahmad E. Finger millet germplasm characterization and evaluation using principal component analysis. Int J Chem Stud. 2019;7(2):1002-5.
  13. 13. Mahanthesha M, Sujatha M, Meena AK, Pandravada SR. Correlation and path coefficient analysis in finger millet (Eleusine coracana (L.) Gaertn). J Pharmacogn Phytochem. 2018;7(4):3193-6.
  14. 14. Shet MN, Jagadeësha GY, Lokesh C, Gireesh, Gowda J. Genetic variability, association and path coefficient studies in two interspecific crosses of finger millet [Eleusine coracana (L.) Gaertn]. Int J Plant Sci. 2010;5(1):24-9.
  15. 15. Ganapathy S, Nirmalakumari A, Muthiah AR. Genetic variability and interrelationship analyses for economic traits in finger millet germplasm. World Agric Sci. 2011;7(2):185-8.
  16. 16. Haradari C, Ugalat J, Nagabhushan A. Study on character association, genetic variability and yield components of finger millet (Eleusine coracana L.). J Crop Weed. 2012;8(2):32-5.
  17. 17. Dhamdhere DH, Pandey PK, Shrotria PK. Genetic variability, heritability and genetic advance of yield components and mineral nutrients in finger millet (Eleusine coracana (L.) Gaertn). PJR. 2011;9(1):46-8.
  18. 18. Lule D, Tesfaye K, Fetene M, Santie de Villiers. Multivariate analysis for quantitative traits in finger millet (Eleusine coracana subsp. coracana) population collected from eastern and southeastern Africa: detection for patterns of genetic diversity. Int J Agric Res. 2012;7(6):303-14. https://doi.org/10.3923/ijar.2012.303.314
  19. 19. Vidhate NM, Sarode SB, Gomashe SS. Study of correlation and path analysis in finger millet [Eleusine coracana (L.) Gaertn]. Int J Chem Stud. 2020;8(4):118-22. https://doi.org/10.22271/chemi.2020.v8.i4b.9677
  20. 20. Chavan BR, Jawale LN, Shinde AV. Correlation and path analysis studies in finger millet for yield and yield contributing traits (Eleusine coracana L. Gaertn). Int J Chem Stud. 2020;8(1):2911-4. https://doi.org/10.22271/chemi.2020.v8.i1ar.8713
  21. 21. Keerthana K, Chitra S, Subramanian A, Elangovan M. Character association and path coefficient analysis in finger millet (Eleusine coracana (L.) Gaertn) genotypes under sodic condition. J Pharm Innov. 2019;8(6):556-9.
  22. 22. Anuradha N, Patro TSSK. Genetic variability of quantitative traits in finger millet genotypes. J Pharmacogn Phytochem. 2019;8(3):2664-7.
  23. 23. Jadhav R, Ratna Babu D, Lal Ahamed M, Srinivasa Rao V. Character association and path coefficient analysis for grain yield and yield components in finger millet (Eleusine coracana (L.) Gaertn). EJPB. 2015;6(2):535-9.
  24. 24. Negi S, Kumar V, Bhatt A. Genetic diversity among finger millet [Eleusine coracana (L.) Gaertn] genotypes for yield and its contributing traits. IJCMAS. 2017;6(8):3332-7. https://doi.org/10.20546/ijcmas.2017.608.397
  25. 25. Lule D, Tesfaye K, Fetene M, De Villers. Inheritance and association of quantitative traits in finger millet (Eleusine coracana subsp. coracana) landraces collected from eastern and southeastern Africa. International Journal of Genetics. 2012;2(2):12-21.
  26. 26. Sapkal SR, Bhavsar VV, Barhate KK, Kohakade SN. Correlation and path analysis for different characteristics in germplasm of finger millet (Eleusine coracana (L.) Gaertn.). IJCMAS. 2019;8(1):1020-7. https://doi.org/10.20546/ijcmas.2019.801.111
  27. 27. Suryanarayana L, Sekhar D, Tejeswara Rao K. Genetic divergence studies in finger millet (Eleusine coracana (L.) Gaertn.) genotypes. J Pharmacogn Phytochem. 2019;8(4):3050-2.
  28. 28. Bedis MR, Patil HS, Patil VS, Jangale GD. Genetic divergence in finger millet (Eleusine coracana G.). Natl J Plant Improv. 2007;9(1):58-9.
  29. 29. Devaliya SD, Singh M, Intawala CG. Genetic divergence studies in finger millet (Eleusine coracana (L.) Gaertn.). IJCMAS. 2017;6(11):2017-22. https://doi.org/10.20546/ijcmas.2017.611.240
  30. 30. Patel S, Patil HE, Patel B. Genetic diversity analysis in finger millet (Eleusine coracana (L.) Gaertn.). JPP. 2020;12:2188-94.
  31. 31. Ashoka P, Raut D, Sudeepthi B, Gawande KN, Reddy GSV, Padhan SR, et al. Millet's role as a climate resilient staple for future food security: a review. Int J Environ Clim. 2023;13(11):4542-52. https://doi.org/10.9734/ijecc/2023/v13i113634
  32. 32. Krishnababu ME, Mandal O, Begum M, Saikanth DRK, Nandy R, Kaushal K, Mishra P. Exploring millet genetic diversity for improved crop resilience: a review. Int J Environ Clim Change. 2024;14(1):898-905. https://doi.org/10.9734/ijecc/2024/v14i13908
  33. 33. Mishra A, Mishra TK, Swain B, Priyadarsini A, Nanda S, Dwibedi SK, Dash M. Molecular heterosis for biomass and biofuel related traits in rice. Cereal Res Commun. 2024;52(3):919-36. https://doi.org/10.1007/s42976-023-00454-7
  34. 34. Mishra P, Nanda SR, Barpanda T, Dash M, Dash S, Choudhury S, et al. The complexity of kodo millet: genomic analysis and implications in crop improvement. Planta. 2025;261(1):1-20. https://doi.org/10.1007/s00425-024-04588-8
  35. 35. Mishra P, Padhan SR. Finger millet: a sustainable approach for nutritional security and its biofortification. In: Pradhan J, Sahoo JP, Samal KC, Dash M, editors. Millets and other potential crops. CRC Press; 2024. p. 27-43. https://doi.org/10.1201/9781003531937-9
  36. 36. Padhan SR, Jat SL, Mishra P, Darjee S, Saini S, Padhan SR, Ranjan S. Corn for biofuel: status, prospects and implications. In: Kausik P, editor. New prospects of maize, IntechOpen; 2024. p. 181-200. https://doi.org/10.5772/intechopen.112227
  37. 37. Chowdhury P, Mahi NA, Yeassin R, Chowdhury N, Farrok O. Biomass to biofuel: impacts and mitigation of environmental, health and socioeconomic challenges. Energy Convers Manage X. 2024;25:100889. https://doi.org/10.1016/j.ecmx.2025.100889

Downloads

Download data is not yet available.