Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Comprehensive review of the red palm weevil: Invasion biology, distribution and management strategies

DOI
https://doi.org/10.14719/pst.10465
Submitted
4 July 2025
Published
08-12-2025

Abstract

The red palm weevil (Rhynchophorus ferrugineus (Olivier)) is one of the most destructive pests of palm trees worldwide, with severe ecological and economic impacts. This review synthesizes current knowledge on its invasion history, global distribution, host range, biology and damage mechanisms, while assessing advances in detection, monitoring and integrated pest management (IPM). Since its first record in India in 1790, human-mediated trade of infested palms has facilitated its spread across Asia, the Middle East, North Africa and Europe, with Oman reporting infestations since 1993. Temperature, humidity and other environmental factors strongly influence its lifecycle and dispersal, often enabling hidden infestations that remain undetected until irreversible damage occurs. Conventional management approaches primarily insecticides face limitations due to resistance, environmental risks and high costs. Recent advances in eco-friendly biological agents, pheromone trapping, RNA interference, remote sensing and artificial intelligence (AI) offer promising pathways to strengthen IPM frameworks. Case studies in the Gulf highlight both successes and persistent challenges, particularly in farmer participation, surveillance systems and cost-effective implementation. Future directions should prioritize reliable early-detection technologies, predictive modeling of pest distribution under climate change, enhanced quarantine measures and the integration of AI- and Internet of Things (IoT)-based monitoring tools. A coordinated regional strategy, supported by sustainable policies and farmer engagement, is critical to reducing the global threat of red palm weevil (RPW).

References

  1. 1. Gadelhak GG, Enan MR. Genetic diversity among populations of red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), determined by random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Int. J. Agric. Biol. 2005;7(3):395-99.
  2. 2. El-Shafie HAF, Faleiro JR. Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae): global invasion, current management options, challenges and future prospects. In: Invasive species-introduction pathways, economic impact and possible management options. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.93391
  3. 3. Murphy ST, Briscoe BR. The red palm weevil as an alien invasive: Biology and the prospects for biological control as a component of IPM. Biocontrol News Inf. 1999;20(1):35-46.
  4. 4. Wattanapongsiri A. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Dept Agric Sci Bull. 1966;1(1):328.
  5. 5. Hoddle MS, Antony B, El-Shafie HAF, Chamorro ML, Milosavljević IM, Löhr B, et al. Taxonomy, biology, symbionts, omics and management of Rhynchophorus palm weevils (Coleoptera: Curculionidae: Dryophthorinae). Annu Rev Entomol. 2024;22(1):455-79. https://doi.org/10.1146/annurev-ento-013023-121139
  6. 6. CABI. PRA for the accidental introduction of Rhynchophorus ferrugineus (red palm weevil) into Ghana. 2021.
  7. 7. Hunsberger AGB, Giblin-Davis RM, Weissling TJ. Symptoms and population dynamics of Rhynchophorus cruentatus (Coleoptera: Curculionidae) in Canary Island date palms. Fla Entomol. 2000;83(3):290-93. https://doi.org/10.2307/349634
  8. 8. León-Quinto T, Serna A. Cryoprotective response as part of the adaptive strategy of the red palm weevil, Rhynchophorus ferrugineus, against low temperatures. Insects. 2022;13(2):134. https://doi.org/10.3390/insects13020134
  9. 9. Weissling TJ, Giblin-Davis RM. Water loss dynamics and humidity preference of Rhynchophorus cruentatus (Coleoptera: Curculionidae) adults. Environ Entomol. 1993;22(1):93-8. https://doi.org/10.1093/ee/22.1.93
  10. 10. Hussain A, Rizwan-ul-Haq M, Aljabr A, Al-Ayedh H. Managing invasive populations of red palm weevil: A worldwide perspective. J Food Agric. Environ. 2013;11(2):456-63.
  11. 11. Abbas M. IPM of the red palm weevil, Rhynchophorus ferrugineus. In: Ciancio A, Mukerji K, editors. Integrated management of arthropod pests and insect borne diseases. Dordrecht: Springer; 2010. p. 209-33. https://doi.org/10.1007/978-90-481-8606-8_9
  12. 12. Rabha H, Chakrabarty R, Acharya GC. New distributional record of red palm weevil, Rhynchophorus ferrugineus (Olivier) infesting arecanut in Assam, India. J Plantation Crops. 2013;41(2).
  13. 13. Kassem HS, Alotaibi BA, Ahmed A, Aldosri FO. Sustainable management of the red palm weevil: The nexus between farmers’ adoption of integrated pest management and their knowledge of symptoms. Sustainability. 2020;12(22):1–16. https://doi.org/10.3390/su12229647
  14. 14. Ferry M. The world situation and the main lessons of 30 years of fight against the red palm weevil. Arab J. Plant Prot. 2019;37(2):109–18. https://doi.org/10.22268/AJPP-037.2.109118
  15. 15. Milek TM, Šimala M. First records of the red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) and the palm borer, Paysandisia archon (Burmeister, 1880) in Croatia. Zbornik Predavanj Referatov. 2013;11:366–68.
  16. 16. Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A bridge to the pest. Insects. 2023;14(3):255. https://doi.org/10.3390/insects14030255
  17. 17. Na SM, Im GI, Lee WS, Kim DG. Assessment of attractant combinations for the management of red palm weevils (Rhynchophorus ferrugineus) in the United Arab Emirates. Insects. 2024;15(4):218. https://doi.org/10.3390/insects15040218
  18. 18. Kinawi MM. Date palm and date pests in Sultanate of Oman. Muscat: Royal Court Affairs; 2005. p. 82–102.
  19. 19. Dalbon VA, Acevedo JPM, Santana AEG, Goulart HF, Laterza I, Riffel A, et al. Early detection and preventive control of Rhynchophorus ferrugineus (Coleoptera: Curculionidae): A quarantine pest in Brazil. Arab J Plant Prot. 2019;37(2):130–5.
  20. https://doi.org/10.22268/AJPP-037.2.130135
  21. 20. Ezaby E, Khalifa FAO, Assal AE. Integrated pest management for the control of red palm weevil in the UAE Eastern region, Al-Ain. In: Proc. First Int. Conf. Date Palms; 1998. p. 269–81.
  22. 21. Fiaboe KKM, Peterson T, Kairo MTK, Roda L. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Fla Entomol. 2012;95(3):659–73. https://doi.org/10.1653/024.095.0317
  23. 22. Al-Khatri SA. Date palm pests and their control. Khalifa Int. Award Date Palm Agric Innov. 2009;1(4):62–7.
  24. 23. Al-Zadjali TS, Abd-Allah F, El-Haidari H. Insect pests attacking date palms and dates in Sultanate of Oman. Egypt J Agric. Res. 2006;84(1):51–9. https://doi.org/10.21608/ejar.2006.228947
  25. 24. Oman. Ministry of Agriculture, Fisheries and Water Resources. Announcement of agricultural quarantine areas Act, 2009 (Act No. 31 of 2009). Government Gazette No. 885; 2009.
  26. 25. Oman. Ministry of Agriculture, Fisheries and Water Resources. Announcement of agricultural quarantine areas Act, 2012 (Act No. 124 of 2012). Government Gazette No. 974; 2012.
  27. 26. Oman. Ministry of Agriculture, Fisheries and Water Resources. Announcement of agricultural quarantine areas Act, 2013 (Act No. 90 of 2013). Government Gazette No. 1007; 2013.
  28. 27. Oman. Ministry of Agriculture, Fisheries and Water Resources. Announcement of agricultural quarantine areas Act, 2012 (Act No. 267 of 2012). Government Gazette No. 992; 2012.
  29. 28. MAFWR. MAFWR 44/2014 announcement of agricultural quarantine areas. OG 1046; 2014.
  30. 29. MAFWR. MAFWR 272/2020 announcement of agricultural quarantine areas. OG 1370; 2020.
  31. 30. MAFWR. MAFWR 52/2021 announcement of agricultural quarantine areas. OG 1390; 2021.
  32. 31. Faleiro JR. Insight into the management of red palm weevil Rhynchophorus ferrugineus Olivier: Based on experiences on coconut in India and date palm in Saudi Arabia. Fundación Agroalimed. 2006;35–57.
  33. 32. Giblin-Davis RM, Faleiro JR, Jaques JA, Peña JE, Vidyasagar PSPV. Biology and management of the red palm weevil Rhynchophorus ferrugineus. In: Peña JE, editor. Potential invasive pests of agricultural crops. Wallingford: CAB International; 2013. p. 1–34. https://doi.org/10.1079/9781845938291.0001
  34. 33. El-Shafie HAF. Area-wide integrated management of red palm weevil Rhynchophorus ferrugineus (Olivier 1790) (Coleoptera: Curculionidae) in date palm plantations: A review. Persian Gulf Crop Prot. 2014;3(1):92–118.
  35. 34. Malumphy C, Moran H. Red palm weevil Rhynchophorus ferrugineus. Plant Pest Notice. 2007;50:1–3.
  36. 35. Dembilio Ó, Jaques JA. Bio-ecology and integrated management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in the region of Valencia (Spain). Hellenic Plant Prot. J. 2014;5:1–12.
  37. 36. Balijepalli SB, Faleiro JR. Is policy paralysis on quarantine issues in the Near East and North Africa region leading to the buildup and spread of red palm weevil Rhynchophorus ferrugineus? Arab J Plant Prot. 2019;37(2):89–100.
  38. https://doi.org/10.22268/AJPP-037.2.089100
  39. 37. Aziz AT. Red palm weevil, Rhynchophorus ferrugineus, a significant threat to date palm tree, global invasions, consequences and management techniques. J. Plant Dis. Prot. 2024;131(1):9–26. https://doi.org/10.1007/s41348-023-00805-w
  40. 38. Dembilio Ó, Jacas JA. Basic bio-ecological parameters of the invasive red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis under Mediterranean climate. Bull Entomol Res. 2011;101(2):153–63. https://doi.org/10.1017/S0007485310000283
  41. 39. Abe F, Hata K, Sone K. Life history of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophtoridae), in Southern Japan. Fla Entomol. 2009;92(3):421–25. https://doi.org/10.1653/024.092.0302
  42. 40. Solaiman R, Abd El-Latif N. Seasonal flight activity and some attractants potency on the red palm weevil, Rhynchophorus ferrugineus using pheromones trap at Fayoum Governorate, Egypt. J Plant Prot Pathol. 2013;4(11):1011–23. https://doi.org/10.21608/jppp.2013.87668
  43. 41. Arafa O, Barakatt M. Effect of weather factors on seasonal population fluctuation of red palm weevil, Rhynchophorus ferrugineus adults attracted to pheromone traps at El-Sharkia Governorate, Egypt. Egypt J Plant Prot Pathol. 2021;12(12):843–8. https://doi.org/10.21608/jppp.2021.220017
  44. 42. Al-Dobai S, Elkahky M, Faleiro R. Proceedings of the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management. Rome: FAO; 2019. https://openknowledge.fao.org/items/de5be236-6d39-4929-9874-dd44b0622baf
  45. 43. Karar ME, Reyad O, Abdel-Aty AH, Owyed S, Hassan MF. Intelligent IoT-aided early sound detection of red palm weevils. Comput Mater Continua. 2021;69(3):4095–111. https://doi.org/10.32604/cmc.2021.019059
  46. 44. Sable MG, Rana DK. Impact of global warming on insect behavior: A review. Agric Rev. 2016;37(1):81–4. https://doi.org/10.18805/ar.v37i1.9270
  47. 45. Salama HS, Zaki FN, Abdel-Razek AS. Ecological and biological studies on the red palm weevil Rhynchophorus ferrugineus. Arch Phytopathol Plant Prot. 2009;42(4):392–99. https://doi.org/10.1080/03235400601121521
  48. 46. Avand-Faghih A. The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. in Saravan region (Iran). Appl Entomol Phytopathol. 1996;63:16–8.
  49. 47. Ezaby E. A biological in-vitro study on the red Indian date palm weevil. Arab J Plant Prot. 1997;15(2):84–7.
  50. 48. Manzoor M, Ahmad JN, Ahmad SJN, Naqvi SA, Umar UUD, Rasheed R, et al. Population dynamics, abundance and infestation of the red palm weevil in Pakistan. Pak J Agric Sci. 2020;57(2):381–91. https://doi.org/10.21162/PAKJAS/20.6928
  51. 49. Aldryhim Y, Al-Bukiri S. Effect of irrigation on within-grove distribution of red palm weevil. Agric Mar Sci. 2003;8(1):47–9. https://doi.org/10.24200/jams.vol8iss1pp47-49
  52. 50. Masó Á. Factors influencing the mobility of red palm weevil adults. Spain: Universitat Politécnica de Valéncia; 2015.
  53. 51. Conti F, Sesto F, Raciti E, Tamburino V, Longo S. Ecological factors affecting spread of red palm weevil in eastern Sicily. Palms. 2008;52(3):127–32.
  54. 52. Faleiro JR. A review of issues and management of the red palm weevil in coconut and date palm. Int J Trop Insect Sci. 2006;26(3):135–54.
  55. 53. Vidyasagar P. Impact of mass pheromone trapping on red palm weevil in Saudi Arabia. The Planter. 2000;76:347–55. https://doi.org/10.56333/tp.2000.011
  56. 54. Ajlan A, Abdulsalam K. Efficiency of pheromone traps for controlling red palm weevil under Saudi Arabia conditions. Bull Entomol Soc Egypt Econ Ser. 2000;27:109–20.
  57. 55. Faleiro JR. Pheromone technology for management of red palm weevil - Technical Bulletin. 2005;4:40.
  58. 56. El-Garhy ME. Field evaluation of aggregation pheromone of the red palm weevil in Egypt. Brighton Crop Prot Conf. 1996;3:1059–64.
  59. 57. Hussain A, Elsharabasy S, Megahed M, Abd Elmagid M. Population abundance of red palm weevil adults in Baharia Oases, Egypt. J Plant Prot Pathol. 2016;7(10):649–54. https://doi.org/10.21608/jppp.2016.52097
  60. 58. Darwish A, Halawa S, Abdallah F. Population fluctuation of red palm weevil in two Egyptian regions. Ann Agric Sci. 2020;58(3):641–48. https://doi.org/10.21608/assjm.2020.131636
  61. 59. Ávalos JA, Balasch S, Soto A. Flight behaviour and dispersal of red palm weevil using mark-release-recapture. Bull Entomol Res. 2016;106(5):606–14. https://doi.org/10.1017/S0007485316000341
  62. 60. El-Sabea AMR, Faleiro JR, Abo-El-saad MM. Economic threat of red palm weevil to date plantations of Gulf region. Outlooks Pest Manag. 2009;20(3):131–34. https://doi.org/10.1564/20jun11
  63. 61. Ministry of Agriculture, Fisheries and Water Resources. Brief report on integrated management programme for red palm weevil. Oman; 2012.
  64. 62. Ministry of Agriculture, Fisheries and Water Resources. Brief report on integrated management programme for red palm weevil. Oman; 2017.
  65. 63. Ministry of Agriculture, Fisheries and Water Resources. Brief report on integrated management programme for red palm weevil. Oman; 2022.
  66. 64. Dembilio Ó, Jaques JA. Biology and management of red palm weevil. In: Wakil W, Faleiro JR, Miller T, editors. Sustainable Pest Management in Date Palm. Cham: Springer; 2015. p. 13–36. https://link.springer.com/chapter/10.1007/978-3-319-24397-9_2. https://doi.org/10.1007/978-3-319-24397-9_2
  67. 65. Eldin HA, Waleed K, Samir M, Tarek M, Sobeah H, Salam MA. A survey on detection of red palm weevil inside palm trees. In: ACM International Conference; 2020 Nov 11-13; Cairo, Egypt. New York: ACM; 2020. https://doi.org/10.1145/3436829.3436861
  68. 66. Kurdi H, Al-Aldawsari A, Al-Turaiki I, Aldawood AS. Early detection of red palm weevil infestation using data mining. Plants. 2021;10(1):1–8. https://doi.org/10.3390/plants10010095
  69. 67. Faleiro JR, Ferry M, Yaseen T, Al-Dobai S. Overview of the gaps, challenges and prospects of red palm weevil management. Arab J Plant Prot. 2019;37(2):170–7. https://doi:10.22268/AJPP-037.2.170177
  70. 68. Sabbahi R, Hock V. Entomopathogenic fungi against the red palm weevil: Lab and field evidence. Crop Prot. 2024;177:106566. https://doi.org/10.1016/j.cropro.2023.106566
  71. 69. Husain M, Rasool KG, Sutanto KD, Omer AO, Tufail M, Aldawood AS. Laboratory evaluation of indigenous and commercial entomopathogenic nematodes against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects. 2024;15(4). https://doi:10.3390/insects15040290
  72. 70. Al-Zyoud F, Shibli R, Ghabeish I. Current status, challenges, management and future perspectives of the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera, Curculionidae) eradication - A review. J Exp Biol Agric Sci. 2021;9(6):697–714. https://doi:10.18006/2021.9(6).697.714
  73. 71. Massa R, Panariello G, Pinchera D, Schettino F, Caprio E, Griffo R, et al. Experimental and numerical evaluations on palm microwave heating for red palm weevil pest control. Sci Rep. 2017;7(1). https://doi:10.1038/srep45299
  74. 72. Massa R, Caprio E, de Santis M, Griffo R, Migliore MD, Panariello G, et al. Microwave treatment for pest control: The case of Rhynchophorus ferrugineus in Phoenix canariensis. EPPO Bull. 2011;41(2):128–35. https://doi:10.1111/j.1365-2338.2011.02447.x
  75. 73. Al-Dosary NMN, Al-Dobai S, Faleiro JR. Review on the management of red palm weevil Rhynchophorus ferrugineus Olivier in date palm Phoenix dactylifera L. Emirates J Food Agric. 2016;28(1):34–44. https://doi:10.9755/ejfa.2015-10-897
  76. 74. Moneim A, Al-Shawaf A, Al-Abdan S, Al-Abbad AH, Abdallah A Ben, Faleiro JR. Validating area-wide management of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date plantations of Al-Hassa, Saudi Arabia. Indian J Plant Prot. 2012;40(4):255–9.
  77. 75. Faleiro JR, Satarkar VR. Attraction of food baits for use in red palm weevil Rhynchophorus ferrugineus Olivier pheromone trap. Indian J Plant Prot. 2005;33(1):23–5.
  78. 76. Oehlschlager AC, Chinchilla C, Castillo G, Gonzalez L. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fla Entomol. 2002;85(3):507–13. https://doi:10.1653/0015-4040(2002)085[0507:CORRDB]2.0.CO;2
  79. 77. Rajapakse CNK, Gunawardena NE, Perera G, Rd C. Pheromone baited trap for the management of red palm weevil, Rhynchophorus ferrugineus F. (Coleoptera: Curculionidae) population in coconut plantations. Cocos. 2010;13:54–65. https://doi:10.4038/cocos.v13i0.2177
  80. 78. Fajardo M, Rodríguez X, Hernández CD, Barroso L, Morales M, González A, et al. The eradication of the invasive red palm weevil in the Canary Islands. In: Area-Wide Integrated Pest. Boca Raton (FL): CRC Press; 2021. p. 539–50.
  81. 79. Cinnirella A, Bisci C, Nardi S, Ricci E, Palermo FA, Bracchetti L. Analysis of the spread of Rhynchophorus ferrugineus in an urban area using GIS techniques: A case study in Central Italy. Urban Ecosyst. 2020;23(2):255–69. https://doi:10.1007/s11252-019-00920-3
  82. 80. Hammami Z, Krizhanovsky E, Elbattay A, Singh RK. Study on the effectiveness of different control techniques for red palm weevil (Rhynchophorous ferrugineus). Khalifa Int Award Date Palm Agric Innov. 2024;16:48–61.
  83. 81. FAO. Red Palm Weevil: Guidelines on management practices. Rome: FAO; 2020. https://doi.org/10.4060/ca7703en
  84. 82. Austin MP. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol Model. 2002;157(2–3):101–18. https://doi:10.1016/S0304-3800(02)00205-3
  85. 83. Phillips SJ, Dudík M, Phillips SJ. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31(2):161–75. https://doi:10.1111/j.0906-7590.2008.5203.x
  86. 84. Taylor S, Kumar L. Sensitivity analysis of CLIMEX parameters in modelling potential distribution of Lantana camara L. PLoS One. 2012;7(7):e40969. https://doi:10.1371/journal.pone.0040969
  87. 85. Chejara VK, Kriticos DJ, Kristiansen P, Sindel BM, Whalley RDB, Nadolny C. The current and future potential geographical distribution of Hyparrhenia hirta. Weed Res. 2010;50(2):174–https://doi:10.1111/j.1365-3180.2009.00765.x
  88. 86. Ge X, He S, Wang T, Yan W, Zong S. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS One. 2015;10(10). https://doi:10.1371/journal.pone.0141111
  89. 87. Byeon D, Jung S, Lee WH. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J Asia-Pac Biodivers. 2018;11(3):325–33. https://doi:10.1016/j.japb.2018.06.002
  90. 88. Aidoo OF, Ding F, Ma T, Jiang D, Wang D, Hao M, et al. Determining the potential distribution of Oryctes monoceros and Oryctes rhinoceros using machine learning with high-dimensional multidisciplinary environmental variables. Sci Rep. 2022;12(1):17439. https://doi:10.1038/s41598-022-21367-1
  91. 89. Zou Y, Ge X, Guo S, Zhou Y, Wang T, Zong S. Impacts of climate change and host plant availability on the global distribution of Brontispa longissima (Coleoptera: Chrysomelidae). Pest Manag Sci. 2020;76(1):244–56. https://doi:10.1002/ps.5503
  92. 90. Li H, Jianghua S, Hongxiang H, Hui X, Dayong X. Prediction of potential distribution of the coconut leaf beetle in China. For Pest Dis. 2005;24(6):5–7. https://doi:10.3969/j.issn.1671-0886.2005.06.002
  93. 91. Shabani F, Kumar L, Al Shidi RHS. Impacts of climate change on infestations of Dubas bug (Ommatissus lybicus Bergevin) on date palms in Oman. PeerJ. 2018;6:e5545. https://doi:10.7717/peerj.5545
  94. 92. Al Adhoobi AS, Al Jufaili SM, Al Ruheili A. Predicting habitat distributions for the endemic fish Garra shamal (Teleostei: Cyprinidae) in the Omani Hajar Mountain under present and future climate change scenarios using MaxEnt. J Surv Fish Sci. 2023;10(1):3591–600.
  95. 93. Al-Ruheili AM, Boluwade A, Al-Subhi AM. Predicting mango sudden decline due to Ceratocystis fimbriata under a changing climate. Arab J Plant Prot. 2021;39(3):215–23. https://doi:10.22268/AJPP-039.3.215223
  96. 94. Al-Kindi KM, Al-Wahaibi AK, Kwan P, Andrew NR, Welch M, Al-Oufi M, et al. Predicting the potential geographical distribution of parasitic natural enemies of the Dubas bug (Ommatissus lybicus de Bergevin) using geographic information systems. Ecol Evol. 2018;8(16):8297–310. https://doi:10.1002/ece3.4286
  97. 95. Zhang Y, Wan Y, Wang C, Chen J, Si Q, Ma F. Potential distribution of three invasive agricultural pests in China under climate change. Sci Rep. 2024;14(1):13672. https://doi:10.1038/s41598-024-63553-3
  98. 96. SABTU NBM. Predictive model for red palm weevil population in coconut using environmental variables and regression method [thesis]. Malaysia: Universiti Teknologi Malaysia; 2021.

Downloads

Download data is not yet available.