Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Impact of canopy architecture on phenology and production efficiency of flower crops: A review

DOI
https://doi.org/10.14719/pst.10508
Submitted
8 July 2025
Published
07-10-2025

Abstract

Canopy architecture plays a crucial role in regulating plant growth, phenology and yield by influencing the microclimatic environment, light interception and resource use efficiency. This review systematically explores the interplay between canopy structure and plant phenological stages, particularly in flower crops. Structural traits such as leaf orientation, plant height, branching pattern and spatial distribution of foliage significantly determine the distribution of light within the canopy, affecting photosynthesis and developmental timing. Variations in canopy architecture have been shown to influence flowering induction, fruit set and yield potential by altering the temperature and light quality perceived by the plant. The review also highlights the hormonal control of canopy traits, with auxins, gibberellins and cytokinins modulating shoot elongation, leaf expansion and apical dominance. Furthermore, it examines practical approaches for canopy manipulation, including spacing, pruning and training systems, aimed at maximizing productivity and enhancing crop performance under varied environmental conditions. The integration of remote sensing tools and canopy modelling techniques is emphasized for real-time monitoring and optimization of canopy performance. Understanding the relationship between canopy design and phenology provides critical insights for breeding programs and precision agriculture strategies. This synthesis underscores the importance of tailored canopy management to achieve sustainable yield improvements and better adaptation to climate variability in flower crops.

References

  1. 1. Monsi M, Uchijima Z, Oikawa T. Structure of foliage canopies and photosynthesis. Annu Rev Ecol Syst. 1973;4(1):301–27. https://doi.org/10.1146/annurev.es.04.110173.001505
  2. 2. Baldocchi DD, Wilson KB, Gu L. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-An assessment with the biophysical model CANOAK. Tree Physiol. 2002;22(15–16):1065–77. https://doi.org/10.1093/treephys/22.15-16.1065
  3. 3. Dhillon WS, Thakur A. Canopy management and effects of pruning on flowering tendencies in fruit trees. In: National seminar-cum-workshop on physiology of flowering in perennial fruit crops.Lucknow, India. 2014. p. 182–201.
  4. 4. Phanindra P, Vinay M, Paul SS, Kotiyal A. Regulations of flowering in fruit crop for higher yield and quality production. A Monthly Peer Reviewed Magazine for Agriculture and Allied Sciences. 2024.
  5. 5. Niinemets Ü. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ. 2007;30(9):1052–71. https://doi.org/10.1111/j.1365-3040.2007.01683.x
  6. 6. Huett DO. Macadamia physiology review: A canopy light response study and literature review. Aust J Agric Res. 2004;55(6):609. https://doi.org/10.1071/AR03180
  7. 7. Niinemets Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res. 2010;25(4):693–714. https://doi.org/10.1007/s11284-010-0712-4
  8. 8. Miller PC, Stoner WA. Canopy structure and environmental interactions. In: Solbrig OT, Jain S, Johnson GB, Raven PH, editors. Topics in plant population biology. Palgrave: London. 1979. p. 428–58. https://doi.org/10.1007/978-1-349-04627-0_19
  9. 9. Anthony BM, Minas IS. Optimizing peach tree canopy architecture for efficient light use, increased productivity and improved fruit quality. Agronomy. 2021;11(10):1961. https://doi.org/10.3390/agronomy11101961
  10. 10. Burkholder PR. The rôle of light in the life of plants. I. Light and physiological processes. Bot Rev. 1936;2(1):1–52.
  11. 11. Singh AK. Horticultural practices and post-harvest technology. Coimbatore. Academic Guru Publishing House. 2023.
  12. 12. Norman JM, Campbell GS. Canopy structure. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW, editors. Plant physiological ecology. Dordrecht. Springer. 1989. p. 301–25. https://doi.org/10.1007/978-94-009-2221-1_14
  13. 13. Bonan G. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens Environ. 1993;43(3):303–314. https://doi.org/10.1016/0034-4257(93)90072-6
  14. 14. Valladares F, Niinemets Ü. The architecture of plant crowns: from design rules to light capture and performance. In: Pugnaire FI, Valladares F, editors. Functional plant ecology. 2nd ed. Boca Raton. CRC Press. 2007. p. 101–50.
  15. 15. Seemann JR, Sharkey TD, Wang J, Osmond CB. Environmental effects on photosynthesis, nitrogen-use efficiency and metabolite pools in leaves of sun and shade plants. Plant Physiol. 1987;84(3):796–802. https://doi.org/10.1104/pp.84.3.796
  16. 16. Huegel CN. The nature of plants: An introduction to how plants work. Gainesville (FL). University Press of Florida. 2019.
  17. 17. Dutton C. Interactions between stomatal density and plant disease. Sheffield. University of Sheffield. 2018.
  18. 18. Wolters H, Jürgens G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009;10(5):305–17. https://doi.org/10.1038/nrg2558
  19. 19. Tsukaya H. Leaf shape: Genetic controls and environmental factors. Int J Dev Biol. 2005;49(5–6):547–55. https://doi.org/10.1387/ijdb.041921ht
  20. 20. Datta SK. Breeding of ornamentals: Success and technological status. Nucleus. 2022;65:107–28. https://doi.org/10.1007/s13237-021-00368-x
  21. 21. Bassow SL, Bazzaz FA. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species. Ecology. 1998;79(8):2660–75. https://doi.org/10.1890/0012-9658(1998)079[2660:HECACL]2.0.CO;2
  22. 22. Wagner S, Fischer H, Huth F. Canopy effects on vegetation caused by harvesting and regeneration treatments. Eur J For Res. 2011;130:17–40. https://doi.org/10.1007/s10342-010-0378-z
  23. 23. Nair A, Neha, Raveena, Paul SS, Rao MS, Siddiqua A, et al. Pruning in horticulture: A blend of art and science. J Sci Res Rep. 2024;30(10):313–29. https://doi.org/10.9734/jsrr/2024/v30i102458
  24. 24. Peavey M, Goodwin I, McClymont L. The effects of canopy height and bud light exposure on the early stages of flower development in Prunus persica (L.) Batsch. Plants. 2020;9(9):1073. https://doi.org/10.3390/plants9091073
  25. 25. Ballaré CL, Caldwell MM, Pearcy RW. Light gaps: sensing the light opportunities in highly dynamic canopy environments. In: Caldwell MM, Pearcy RW, editors. Exploitation of environmental heterogeneity by plants: Ecophysiological processes above- and belowground. San Diego. Academic Press. 1994. p. 73–110.
  26. 26. Phanindra P, Vinay M, Paul SS, Kotiyal A. Regulations of flowering in fruit crop for higher yield and quality production. Agric Allied Sci. 2024:91.
  27. 27. van Doorn WG, van Meeteren U. Flower opening and closure: A review. J Exp Bot. 2003;54(389):1801–12. https://doi.org/10.1093/jxb/erg213
  28. 28. Janick J, editor. Horticultural reviews. Vol. 11. New York: Wiley; 1989. https://doi.org/10.1002/9781118060841.ch4
  29. 29. Pathak S, Das S, Sharma S. Regulation of flowering and off-season production of horticultural crops. In: Chandel A, editor. Advances in growth regulation of fruit crops. Boca Raton. CRC Press. 2023. p. 153-62.
  30. 30. Faust JE, Dole JM. Major cut flowers. In: Cut flowers and foliages. Boston. CAB International. 2021. p. 48–149.
  31. 31. Hota D, Chander S. Growth manipulation through canopy architecture. In: Chandel A, editors. Advances in growth regulation of fruit crops. Boca Raton. CRC Press. 2025. p. 90–104.
  32. 32. van der Meer M, Lee H, de Visser PHB, Heuvelink E, Marcelis LFM. Consequences of interplant trait variation for canopy light absorption and photosynthesis. Front Plant Sci. 2023;14:1012718. https://doi.org/10.3389/fpls.2023.1012718
  33. 33. Llewellyn D, Schiestel K, Zheng Y. Increasing levels of supplemental LED light enhances the rate of flower development of greenhouse-grown cut Gerbera but does not affect flower size and quality. Agronomy. 2020;10(9):1332. https://doi.org/10.3390/agronomy10091332
  34. 34. Suganya S, Rajamani K, Ganga M, Jeyakumar P, Latha MR, Padmapriya S. Response of growth and flowering characters of Jasminum sambac L. to modified planting system and pruning schedule. Agric Sci Dig. 2023;43(3):3627. https://doi.org/10.18805/ag.D-5716
  35. 35. Chumyam A, Shank L, Faiyue B, Uthaibutra J, Saengnil K. Effects of chlorine dioxide fumigation on redox balancing potential of antioxidative ascorbate-glutathione cycle in ‘Daw’longan fruit during storage. Scientia Horticulturae. 2017;222:76-83.
  36. 36. Cerdán P, Chory J. Regulation of flowering time by light quality. Nature. 2003;423(6942):881–85. https://doi.org/10.1038/nature01636
  37. 37. Proietti S, Scariot V, De Pascale S, Paradiso R. Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. Plants. 2022;11(3):432. https://doi.org/10.3390/plants11030432
  38. 38. Sahare HA. Photoperiod: A key pathway for manipulation of flowering time in commercial ornamental crops.
  39. 39. Demotes Mainard S, Péron T, Corot A, Bertheloot J, Le Gourrierec J, Pelleschi Travier S, et al. Plant responses to red and far-red lights, applications in horticulture. Environ Exp Bot. 2016;121:4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
  40. 40. Banerjee A, Roychoudhury A. Plant responses to light stress: Oxidative damages, photoprotection and role of phytohormones. In: Khan MIR, Reddy PS, Ferrante A, Khan NA, editors. Plant hormones under challenging environmental factors. Dordrecht. Springer. 2016. p. 181–213. https://doi.org/10.1007/978-94-017-7758-2_8
  41. 41. Othman Y, Al-Ajlouni M, A’saf T, Sawalha H, Bany Hani M. Influence of gibberellic acid on the physiology and flower quality of gerbera and lily cut flowers. Int J Agric Nat Resour. 2021;48(1):21–33. https://doi.org/10.7764/ijanr.v48i1.2218
  42. 42. Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot. 2013;64(9):2593–2608. https://doi.org/10.1093/jxb/ert141
  43. 43. Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the improvement of ornamental attributes in chrysanthemum: Recent progress in biotechnological advances. Int J Mol Sci. 2022;23(20):12284. https://doi.org/10.3390/ijms232012284
  44. 44. Ausari PK, Ninama N, Bagul HB. Canopy management of horticultural crops. In: Mangroliya R, Mori CV, Bagul H, Kumar C, editor. Revolutionizing horticulture: The green path. New Delhi: Elite Publishing House; 2023. p. 118-28.
  45. 45. Wani RA, Din S, Khan M, Hakeem SA, Jahan N, Lone RA, et al. Canopy management in fruit crops for maximizing productivity. Int J Curr Sci. 2021;9(3):160–65.
  46. 46. Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11(5):1485. https://doi.org/10.3390/su11051485
  47. 47. Paradiso R, Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J Plant Growth Regul. 2022;41:742–80. https://doi.org/10.1007/s00344-021-10337-y
  48. 48. Mika A. Physiological responses of fruit trees to pruning. Hortic Rev. 2011;8:337–78. https://doi.org/10.1002/9781118060810.ch9
  49. 49. Fell D. Vertical gardening: grow up, not out, for more vegetables and flowers in much less space. Emmaus (PA). Rodale. 2011.
  50. 50. Peet MM, Welles G. Greenhouse tomato production. In: Heuvelink E, editor. Tomatoes. Wallingford (UK). CABI Publishing. 2005. p. 257–304. https://doi.org/10.1079/9780851993966.0257
  51. 51. Chandel A, Thakur M, Singh G, Dogra R, Bajad A, Soni V, et al. Flower regulation in floriculture: An agronomic concept and commercial use. Journal of Plant Growth Regulation. 2023;(4):2136-61.
  52. 52. McCollom WC. Vines and how to grow them: A manual of climbing plants for flower, foliage and fruit effects, both ornamental and useful, including those shrubs and similar forms that may be used as vines. New York. Doubleday, Page & Company. 1914.
  53. 53. Haque MA, Sakimin SZ. Planting arrangement and effects of planting density on tropical fruit crops-A review. Horticulturae. 2022;8(6):485. https://doi.org/10.3390/horticulturae8060485
  54. 54. Singh AK. Horticultural practices and post-harvest technology. Coimbatore. Academic Guru Publishing House. 2023.
  55. 55. Kumar A, Kashyap B, Dhiman SR, Pathania S, Hashem A, Abd Allah EF, et al. Impact of planting density and shoot thinning on alstroemeria flowering, soil attributes and cost economics. Heliyon. 2024;10(18):e38158. https://doi.org/10.1016/j.heliyon.2024.e38158
  56. 56. Thakur S, Pathania S, Kumar A. Floral culture and cut flower production. In: New Horizons and Advancements in Horticulture. 2024. p. 320.
  57. 57. Janbandhu MS, Mehta A, Beese S, Pandey SK, Singh B, Patel A, et al. Advances and emerging trends in horticultural production and management. J Exp Agric Int. 2024;46:47–69. https://doi.org/10.9734/jeai/2024/v46i32325
  58. 58. Jeet B, Thangavel M, Prajapati J. Irrigation Techniques in Horticulture. In: Innovations and emerging technologies in horticulture. New Delhi. Elite Publishing House. 2025. p. 20–30
  59. 59. Erel R, Yermiyahu U, Yasuor H, Cohen Chamus D, Schwartz A, Ben-Gal A, et al. Phosphorus nutritional level, carbohydrate reserves and flower quality in olives. PLoS One. 2016;11(12):e0167591. https://doi.org/10.1371/journal.pone.0167591
  60. 60. Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res. 2022;152:23–42. https://doi.org/10.1007/s11120-021-00892-6
  61. 61. Zhao D, Hao Z, Tao J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol Biochem. 2012;61:187–95. https://doi.org/10.1016/j.plaphy.2012.10.005
  62. 62. Whitelam GC, Halliday KJ, editors. Light and plant development. Annual plant Reviews, volume 30. Annals Bot. 2007;101(3):480-81. https://doi.org/10.1093/aob/mcm309
  63. 63. Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol. 2021;185(1):34–48. https://doi.org/10.1093/plphys/kiaa006
  64. 64. Costa JO, Coelho RD, Barros THS, Fraga EF, Fernandes ALT. Leaf area index and radiation extinction coefficient of a coffee canopy under variable drip irrigation levels. Acta Sci Agron. 2019;41:e42703. https://doi.org/10.4025/actasciagron.v41il.42703
  65. 65. Feng L, Raza MA, Chen Y, Khalid MHB, Meraj TA, Ahsan F, et al. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS One. 2019;14(2):e0212885. https://doi.org/10.1371/journal.pone.0212885
  66. 66. De LC, Singh DR. Year-round production of orchids. New Delhi. Agrotech Publishing Academy. 2024.
  67. 67. Elad Y. Cultural and integrated control of Botrytis spp. In: Fillinger S, Elad Y, editors. Botrytis - The fungus, the pathogen and its management in agricultural systems. Cham. Springer. 2016. p. 311–26. https://doi.org/10.1007/978-3-319-23371-0_8
  68. 68. Mitchell CA, Dzakovich MP, Gomez C, Lopez R, Burr JF, Hernández R, et al. Light-emitting diodes in horticulture. In: Janick J, editor. Horticultural Rreviews. Vol. 43. Hoboken (NJ). Wiley. 2015. p. 1–88. https://doi.org/10.1002/9781119107781.ch01
  69. 69. Costa G, Botton A, Vizzotto G. Fruit thinning. In: Janick J, editor. Horticultural rReviews. Vol. 45. Hoboken (NJ). Wiley. 2018. p.185–226. https://doi.org/10.1002/9781119521082.ch4
  70. 70. Singh A, Wagner B, Kasel S, Baker PJ, Nitschke CR. Canopy composition and spatial configuration influences beta diversity in temperate regrowth forests of southeastern Australia. Drones. 2023;7(3):155. https://doi.org/10.3390/drones7030155
  71. 71. Hunter M. Using ecological theory to guide urban planting design: An adaptation strategy for climate change. Landsc J. 2011;30(2):173–93. https://doi.org/10.3368/lj.30.2.173
  72. 72. Box EO. Plant functional types and climate at the global scale. J Veg Sci. 1996;7(3):309–20. https://doi.org/10.2307/3236274
  73. 73. Zarrouk O, Pinto C, Alarcón MV, Flores-Roco A, Santos L, David TS, et al. Canopy architecture and sun exposure influence berry cluster–water relations in the grapevine variety Muscat of Alexandria. Plants. 2024;13(11):1500. https://doi.org/10.3390/plants13111500
  74. 74. Andrews ML. Perennials short and tall: A seasonal progression of flowers for your garden. Bloomington (IN). Indiana University Press. 2008.
  75. 75. Reta K, Netzer Y, Lazarovitch N, Fait A. Canopy management practices in warm environment vineyards to improve grape yield and quality in a changing climate: A review. Sci Hortic. 2025;341:113998. https://doi.org/10.1016/j.scienta.2025.113998
  76. 76. Yang H, He S, Feng Q, Liu Z, Xia S. Lotus (Nelumbo nucifera): A multidisciplinary review of its cultural, ecological and nutraceutical significance. Bioresour Bioprocess. 2024;11:18. https://doi.org/10.1186/s40643-024-00734-y
  77. 77. Björn LO, Middleton BA, Germ M, Gaberščik A. Ventilation systems in wetland plant species. Diversity. 2022;14(7):517. https://doi.org/10.3390/d14070517
  78. 78. Verhoef N, Yokota T, Shibata K, de Boer GJ, Gerats T, Vandenbussche M, et al. Brassinosteroid biosynthesis and signalling in Petunia hybrida. J Exp Bot. 2013;64(8):2435–48. https://doi.org/10.1093/jxb/ert102
  79. 79. Salmasi SZ, Martin C. Introducing saffron and a few medicinal and high value plants for small farms and water deficit conditions of northern New Mexico. J Phytopharmacol. 2024;13(4):334–40. https://doi.org/10.31254/phyto.2024.13410
  80. 80. dos Santos FK, dos Santos EO, Veiga Junior VF, Teixeira Costa BE. Hibiscus rosa-sinensis. InEdible flowers 2024. p. 127-156). Academic Press. https://doi.org/10.1016/B978-0-443-13769-3.00008-X
  81. 81. Singh P, Pandt BA, Ganie MA, Rather TR, Singh L. Diversification of small farms in perspective of climate change: problems and prospects.
  82. 82. Jain S, Lamo K, Walling S, Imchen A, Tirkey JF, Pratyush S, et al. Climate-resilient horticulture: Adapting to climate change through innovative practices and technologies. Int J Environ Clim Change. 2024;14(11):219–33. https://doi.org/10.9734/ijecc/2024/v14i114541
  83. 83. Matzneller P, Gutierrez JD, Caplan D. Canopy management. In: Zheng Y, editor. Handbook of Cannabis production in controlled environments. Boca Raton (FL). CRC Press. 2022. p. 189–212.
  84. 84. Joshel C, Melnicoe R, Center WI. Crop timeline for California greenhouse grown ornamental annual plants. 2004.
  85. 85. Hooks CRR, Wang K-H, Ploeg A, McSorley R. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol. 2010;46(3):307–20. https://doi.org/10.1016/j.apsoil.2010.09.005
  86. 86. McDonald MR, Gossen BD, Kora C, Parker M, Boland G. Using crop canopy modification to manage plant diseases. Eur J Plant Pathol. 2013;135:581–93. https://doi.org/10.1007/s10658-012-0133-z
  87. 87. Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol Evol. 2017;32(6):438–51. https://doi.org/10.1016/j.tree.2017.02.004

Downloads

Download data is not yet available.