Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Trait performance of F1 and F2 generations of rice (Oryza sativa L.) in relation to heterosis and inbreeding depression under saline soils

DOI
https://doi.org/10.14719/pst.10776
Submitted
20 July 2025
Published
16-01-2026

Abstract

The extent of heterobeltiosis and economic heterosis of 24 F1s and inbreeding depression in 24 F2 generations, along with the parents, were raised in saline soils and estimated for ten characters under this study. Heterotic effects of 24 F1s revealed high and significant positive heterosis for grain yield in the cross combinations KPS 10640 × KPS 2874, KPS 10631 × KPS 2874, KPS 10642 × KPS 2874, KPS 10640 × RNR11718 and KPS 10633 × RNR11718, according to the results of better parent heterosis. The results of economic heterosis showed and high and significant positive heterosis for grain yield in the cross combinations KPS 10628 × CSR23, KPS 10640 × CSR23, KPS 10633 × RNR 11718, KPS 10651 × CSR36 and KPS 10640 × RNR11718. The range of inbreeding depression for grain yield was 4.09 % (KPS 10631 × CSR 23) to 42.45 % (KPS 10640 × RNR 11718). Twenty-one of the twenty-four crossings showed a substantial and positive inbreeding depression in F2 for grain yield. Not withstanding their grain yield, these F1s exhibited notable heterosis and inbreeding depression for a few key yield-contributing traits. This study showed that non-additive gene action is present in the inheritance of grain yield plant-1, along with several other yield-contributing traits and in the development of cultivars that can withstand salinity for long-term production.

References

  1. 1. Zheng C, Liu C, Liu L, Tan Y, Sheng X, Yu D, et al. Effect of salinity stress on rice yield and grain quality: A meta-analysis. Eur J Agron. 2023;144:126765:1–12. https://doi.org/10.1016/j.eja.2023.126765
  2. 2. Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR. Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci. 2017;24(3):123–44. https://doi.org/10.1016/j.rsci.2016.09.004
  3. 3. Riaz M, Arif MS, Ashraf MA, Mahmood R, Yasmeen T, Shakoor MB, et al. A comprehensive review on rice responses and tolerance to salt stress. In: Advances in rice research for abiotic stress tolerance. 2019. p. 133–58. https://doi.org/10.1016/B978-0-12-814332-2.00007-1
  4. 4. Ansari AM, Singh YV. Heterosis studies for fruit characters in brinjal (Solanum melongena L.). Electron J Plant Breed. 2016;7(2):197–208. https://doi.org/10.5958/0975-928X.2016.00028.4
  5. 5. Shull GH. Beginnings of the heterosis concept. Heterosis. 1952;23:31–3.
  6. 6. Manlulu N, Ravela R, Waing F, Gramaje L. Molecular and physiological basis of heterosis in hybrid rice performance. Mol Breed. 2025;45(6):1–14. https://doi.org/10.1007/s11032-025-01577-x
  7. 7. Birchler JA. Heterosis: the genetic basis of hybrid vigour. Nat Plants. 2015;1(3):15020:1–7. https://doi.org/10.1038/nplants.2015.20
  8. 8. Hussain I, Ali S, Liu W, Awais M, Li J, Liao Y, et al. Identification of heterotic groups and patterns based on genotypic and phenotypic characteristics among rice accessions of diverse origins. Front Genet. 2022;13:1–15. https://doi.org/10.3389/fgene.2022.811124
  9. 9. Huyen NT. Another explanation for the cause of heterosis phenomenon. J Genet. 2016;95:1065–72. https://doi.org/10.1007/s12041-016-0694-2
  10. 10. Hedrick PW, García-Dorado A. Understanding inbreeding depression, purging and genetic rescue. Trends Ecol Evol. 2016;31:940–52. https://doi.org/10.1016/j.tree.2016.09.005
  11. 11. Mather K, Jinks JL. Introduction to biometrical genetics. Boston, MA: Springer US; 1971. p. 249–52. https://doi.org/10.1007/978-1-4899-3404-8_9
  12. 12. Dagade SB, Dhaduk LK, Mehta DR, Barad AV. Genetic architecture of some yield and biochemical traits of tomato (Solanum lycopersicum L.). Electron J Plant Breed. 2015;6:787–91.
  13. 13. Kempthorne O. An introduction to genetic statistics. New York: John Wiley & Sons Inc.; 1957. p. 468–70.
  14. 14. Venkatesan M, Anbuselvam Y, Murugan S, Palaniraja K. Heterosis for yield, its components and grain traits in rice (Oryza sativa L.). Oryza. 2008;45(1):76–8.
  15. 15. Shankar SK, Singh SK, Nandan R, Sharma A, Kumar R, Kumar V, et al. Estimation of heterosis and inbreeding depression for yield and yield related traits in rice (Oryza sativa L.). Mol Plant Breed. 2010;4(29):238–46.
  16. 16. Vennila S, Anbuselvam Y, Palaniraja K. D² analysis of rice germplasm for some quantitative and quality traits. Electron J Plant Breed. 2011;2(3):392–403.
  17. 17. Srikrishna Latha, Deepak S, Gulzar S, Sanghera S. Combining ability and heterosis for grain yield and its component traits in rice (Oryza sativa L.). Not Sci Biol. 2013;5(1):90–7. https://doi.org/10.15835/nsb519006
  18. 18. Borah P, Sarma D, Hazarika GN. Magnitude of heterosis for yield and its components in hybrid rice (Oryza sativa L.). Int J Agric Sci Res. 2017;7(2):209–16. https://doi.org/10.24247/ijasrapr201729
  19. 19. Kumar R, Kant R, Vennela M, Varma DD. Heterosis studies and molecular characterization of three-line rice hybrids. Environ Conserv J. 2024;25(2):362–9. https://doi.org/10.36953/ECJ.25982744
  20. 20. Hasamuzzaman M, Fujita M, Islam MN, Ahamed KU, Kamrin N. Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol. 2009;6(2):85–9.
  21. 21. Akinwale MG, Gregorio G, Nwilene F, Akinyele BO, Ogunbayo SA, Odiyi AC. Heritability and correlation coefficient analysis for yield and its components in rice (Oryza sativa L.). Afr J Plant Sci. 2011;5(3):207–12. https://doi.org/10.3923/ijpbg.2011.224.234
  22. 22. Sudharani M, Rajya Lakshmi K, Vishnuvardhan RA, Bharathi K, Rama Raju N. Use of DNA polymorphism for characterization and assessment of genetic purity testing in rice hybrids (Oryza sativa L.). Electron J Plant Breed. 2013;4(2):1113–8.
  23. 23. Ghara AG, Nematzadeh G, Bagheri N, Ebrahimi A, Morteza O. Evaluation of general and specific combining ability in parental lines of hybrid rice. Int J Agric Res Rev. 2014;2(4):455–60.
  24. 24. Rukmini DK, Venkanna V, Satish Chandra B, Hari Y. Gene action and combining ability for yield and quality traits in rice (Oryza sativa L.) using diallel analysis. Int J Curr Microbiol Appl Sci. 2018;7(1):2319–26. https://doi.org/10.20546/ijcmas.2018.701.338
  25. 25. Tiwari DK, Pandey P, Giri SP, Dwivedi JL. Heterosis studies for yield and its components in rice hybrids using CMS system. Asian J Plant Sci. 2011;10:29–42. https://doi.org/10.3923/ajps.2011.29.42
  26. 26. Ramesh C, Damodar Raju C, Surender Raju C, Varma NRG. Combining ability and gene action in hybrid rice. Int J Pure Appl Biosci. 2018;6(1):497–510. https://doi.org/10.18782/2320-7051.5199
  27. 27. Parihar A, Pathak AR. Heterosis for various quantitative traits in rice. Oryza. 2008;45(3):181–7.
  28. 28. Rahimi M, Rabiei B, Samizadeh H, Ghasemi AK. Combining ability analysis in rice (Oryza sativa L.) cultivar. J Agric Sci Technol. 2010;12(2):223–31.
  29. 29. Bedi S, Sharma D. Heterosis studies in hybrid rice (Oryza sativa L.). Int J For Crop Improv. 2016;7(1):105–8. https://doi.org/10.15740/HAS/IJFCI/7.1/1-6
  30. 30. Saidaiah P, Ramesha MS, Sudheer Kumar S, Geetha A. Evaluation of rice hybrids for heterosis of yield and yield attributing traits over locations. Madras Agric J. 2012;99(4–6):202–9. https://doi.org/10.29321/MAJ.10.100047

Downloads

Download data is not yet available.