Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Transmission dynamics of mungbean yellow mosaic virus (MYMV) in blackgram: Vector and seed perspectives

DOI
https://doi.org/10.14719/pst.10896
Submitted
27 July 2025
Published
26-11-2025

Abstract

Mungbean yellow mosaic virus (MYMV), a devastating begomovirus transmitted by the whitefly (Bemisia tabaci), is a major constraint in blackgram (Vigna mungo) production across India. The present study aimed to assess the spatial distribution of MYMV disease incidence, confirm the viral identity through molecular diagnostics, investigate vector transmission efficiency and evaluate the seed-transmissible nature of MYMV in blackgram cultivar CO 5. Field surveys in Tamil Nadu during 2023 revealed disease incidence ranging from a minimum of 45 % at Sukkampatti, Madurai, to a maximum of        78 % at Narasipuram, Coimbatore. PCR analysis with CP, MP and REP genes confirmed the presence of MYMV in all field-collected samples, with sequences submitted to NCBI (PQ384577, PV500803 and PV500802). Transmission of MYMV with whitefly Asia I genotype recorded a maximum transmission efficiency of 87.5 % and 93.75 % at 24 hr acquisition access periods (AAP) and inoculation access periods (IAP) respectively, with consistent symptom expression and was further confirmed with PCR. In a grow-out test conducted with field-collected seeds from infected plants, the plants were symptomless, but 51 % of the tested plants were positive in PCR. The dissected seed parts from these PCR positive first-generation grow-out test plants indicated the presence of MYMV in 100 % of seed coats, 80 % of cotyledons and embryonic axes. A second grow-out test conducted with 25 seeds from first-generation PCR-positive plants was again asymptomatic and 40 % of plants were PCR positive. These results provide strong evidence of asymptomatic, latent MYMV infections that act as cryptic inoculum for whitefly-mediated spread. These findings emphasize the need for integrated disease management strategies, including seed certification, molecular diagnostics and early whitefly control to limit MYMV spread and ensure virus free seed production in blackgram.

References

  1. 1. Project Coordinator’s Report. AICRP on Kharif Pulses. ICAR-IIPR, Kanpur, India. 2023.
  2. 2. Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol. 2019;17(10):632-644. https://doi.org/10.1038/s41579-019-0232-3
  3. 3. Malathi VG, John P. Geminiviruses infecting legumes. In: Characterization, diagnosis and management of plant viruses. Studium Press, USA. 2008;97–123.
  4. 4. Biswas, K.K., Malathi, V.G. & Varma, A. Diagnosis of symptomless yellow mosaic begomovirus Infection in pigeon pea by using cloned mungbean yellow mosaic India virus as Probe. J. Plant Biochem Biotechnol. 2008;17:9–14. https://doi.org/10.1007/BF03263253
  5. 5. Nariani TK. Yellow mosaic of mung. Indian Phytopathol. 2009;13:24–9.
  6. 6. Lobin, K.K., Jaunky, V.C. & Taleb-Hossenkhan, N. A meta-analysis of climatic conditions and whitefly Bemisia tabaci population: Implications for tomato yellow leaf curl disease. JoBAZ. 2022;83:57. https://doi.org/10.1186/s41936-022-00320-8
  7. 7. Fishpool LDC, Burban C. Bemisia tabaci: The whitefly vector of African cassava mosaic geminivirus. Trop Sci. 1994;34(1):55–72.
  8. 8. Nair RM, Götz M, Winter S, Giri RR, Boddepalli VN, Sirari A, et al. Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. Eur J Plant Pathol. 2017;149:349–365. https://doi.org/10.1007/s10658-017-1187-8
  9. 9. Prasanna HC, Kanakala S, Archana K, Jyothsna P, Varma RK, Malathi VG. Cryptic species composition and genetic diversity within Bemisia tabaci complex in soybean in India revealed by mtCOI DNA sequence. J Integr Agric. 2015;14(12):2394–403. https://doi.org/10.1016/S2095-3119(14)60931-X
  10. 10. Shankarappa KS, Rangaswamy KT, Narayana DSA, Rekha AR, Raghavendra N. Development of silver leaf assay, protein and nucleic acid-based diagnostic techniques for quick and reliable detection and monitoring of biotype B of the whitefly, Bemisia tabaci (Gennadius). Bull Entomol Res. 2007;97:503–513. https://doi.org/10.1017/S0007485307005251
  11. 11. Banks GK, Colvin J, Chowda-Reddy RV, Maruthi MN, Muniyappa V, Venkatesch HM, et al. First report of Bemisia tabaci B biotype in India and an associated tomato leaf curl virus disease epidemic. Plant Dis. 2001;85:231. https://doi.org/10.1094/PDIS.2001.85.2.231C
  12. 12. Rekha WR, Maruthi MN, Muniyappa V, Colvin J. Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in South India. Entomol Exp Appl. 2005;117:221–233. https://doi.org/10.1111/j.1570-7458.2005.00352.x
  13. 13. Ellango R, Singh ST, Rana VS, Priya NG, Raina H, Chaubey R, et al. Distribution of Bemisia tabaci genetic groups in India. Environ Entomol. 2015;44(4):1258–1264. https://doi.org/10.1093/ee/nvv062
  14. 14. Chowda-Reddy RV, Kirankumar M, Seal SE, Muniyappa V, Valand GB, Govindappa MR, et al. Bemisia tabaci phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J Integr Agric. 2012;11:235–248. https://doi.org/10.1016/S2095-3119(12)60015-2
  15. 15. Malathi VG, John P. Mungbean yellow mosaic viruses. In: Mahy BWJ, van Regenmortel MHV, editors. Encyclopedia of Virology. 3rd ed. Amsterdam: Elsevier. 2008. p. 364–72. https://doi.org/10.1016/B978-012374410-4.00708-1
  16. 16. Karthikeyan A, Shobhana VG, Sudha M, Raveendran M, Senthil N, Pandiyan M, et al. Mungbean yellow mosaic virus (MYMV): A threat to green gram (Vigna radiata) production in Asia. Int J Pest Manag. 2014;60(4):314–24. https://doi.org/10.1080/09670874.2014.982230
  17. 17. Bag MK, Gautam NK, Prasad TV, Pandey S, Dutta M, Roy A. Evaluation of an Indian collection of black gram germplasm and identification of resistance sources to mungbean yellow mosaic virus. Crop Prot. 2014;61:92–101. https://doi.org/10.1016/j.cropro.2014.03.021
  18. 18. Brown JK. Molecular markers for the identification and global tracking of whitefly vector–begomovirus complexes. Virus Res. 2001;71:233–60. https://doi.org/10.1016/S0168-1702(00)00249-4
  19. 19. Simon B, Cenis JL, Demichelis S, Rapisarda C, Caciagli P, Bosco D. Survey of Bemisia tabaci biotypes in Italy with new biotype T. Bull Entomol Res. 2003;93:259–64. https://doi.org/10.1079/BER2003233
  20. 20. Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TS. Identification of a whitefly species by genomic and behavioral studies. Science. 1993;259(5091):74–77. https://doi.org/10.1126/science.8418497
  21. 21. Mound LA, Halsey SH. Whitefly of the world: a systematic catalogue of the Aleyrodidae (Homoptera). Chichester (UK): John Wiley & Sons. 1978. https://doi.org/10.5962/bhl.title.118687
  22. 22. Czosnek H, Shalev AH, Sobol I, Gorovits R, Ghanim M. The incredible journey of begomoviruses in their whitefly vector. Viruses. 2017;9:273. https://doi.org/10.3390/v9100273
  23. 23. Swathi M, Gaur N, Singh K. Virus–vector relationship of yellow mosaic virus and whitefly, Bemisia tabaci (Gennadius) in soybean. Legume Res. 2023;46(7):946–950. https://doi.org/10.18805/LR-4479
  24. 24. Gallet R, Michalakis Y, Blanc S. Vector transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol. 2018;33:144–150. https://doi.org/10.1016/j.coviro.2018.08.005
  25. 25. Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. Narrow bottlenecks affect pea seedborne mosaic virus populations during seed transmission. PLoS Pathog. 2014;10:e1003833. https://doi.org/10.1371/journal.ppat.1003833
  26. 26. Kim J, Kil EJ, Kim S, Seo H, Byun HS, Park J, et al. Seed transmission of sweet potato leaf curl virus in sweet potato. Plant Pathol. 2015;64:1284–1291. https://doi.org/10.1111/ppa.12366
  27. 27. Kothandaraman SV, Devadason A, Ganesan MV. Seed-borne nature of mung bean yellow mosaic virus in blackgram. Appl Microbiol Biotechnol. 2016;100:1925–1933. https://doi.org/10.1007/s00253-015-7188-7
  28. 28. Renukadevi P, Sangeetha B, Malathi VG, Nakkeeran S, Satya VK. Emergence of seed transmission of geminiviruses. In: Geminivirus: Detection, Diagnosis and Management. Cambridge (MA): Academic Press; 2022. p. 285–306. https://doi.org/10.1016/B978-0-323-90587-9.00003-1
  29. 29. Sangeetha B, Malathi VG, Alice D, Suganthy M, Renukadevi P. Seed-transmissible strain of tomato leaf curl New Delhi virus infecting chayote. Virus Res. 2018;258:81–91. https://doi.org/10.1016/j.virusres.2018.10.009
  30. 30. Suruthi V, Nakkeeran S, Renukadevi P, Malathi VG, Rajasree V. Evidence of seed transmission of dolichos yellow mosaic virus. Virus Dis. 2018;29:506–512. https://doi.org/10.1007/s13337-018-0494-9
  31. 31. Manivannan K, Renukadevi P, Malathi VG, Karthikeyan G, Balakrishnan N. A new seed-transmissible begomovirus in bitter gourd (Momordica charantia L.). Microb Pathog. 2019;128:82–89. https://doi.org/10.1016/j.micpath.2018.12.036
  32. 32. Gomathi Devi R, Jothika C, Sankari A, Lakshmi S, Malathi VG, Renukadevi P. Seed transmission of begomoviruses: a potential threat for bitter gourd cultivation. Plants. 2023;12:1396. https://doi.org/10.3390/plants12061396
  33. 33. Swamy SM, Lal SK, Sandra N, Kumar A, Dikshit HK, Mandal B, et al. Cultivar and sowing date affect the seed-borne nature of mungbean yellow mosaic India virus in mung bean (Vigna radiata L.). Indian J Genet Plant Breed. 2025;85(1):118–125. https://doi.org/10.31742/ISGPB.85.1.13
  34. 34. Krishnamoorthy KK, Malathi VG, Renukadevi P, Kumar SM, Raveendran M, Manivannan N, et al. Seed-borne nature of mungbean yellow mosaic virus in blackgram in Tamil Nadu. Curr Appl Sci Technol. 2021;40:58–67. https://doi.org/10.9734/cjast/2021/v40i431295
  35. 35. Sujatha S, Sindhura KAV, Koti PS, Hiremath S, Muttappagol M, Vinay Kumar HD, et al. Influence of weather and seasonal factors on whitefly dynamics, associated endosymbiotic microbiomes and begomovirus transmission causing tomato leaf curl disease: Insights from a metagenomic perspective. Front Microbiol. 2025;16:1555058. https://doi.org/10.3389/fmicb.2025.1555058
  36. 36. Salam SA, Patil MS, Dyadgi AS. Status of mungbean yellow mosaic virus disease incidence on green gram. Karnataka J Agric Sci. 2011;24(2).
  37. 37. Rouhibakhsh A, Priya J, Periasamy M, Haq QMI, Malathi VG. Improved DNA isolation and PCR protocol for begomovirus detection in legumes. J Virol Methods. 2008;147:37–42. https://doi.org/10.1016/j.jviromet.2007.08.004
  38. 38. Rojas MR, Gilbertson RL, Maxwell D. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis. 1993;77:340–347. https://doi.org/10.1094/PD-77-0340
  39. 39. Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses. Front Plant Sci. 2024;15:1376284. https://doi.org/10.3389/fpls.2024.1376284
  40. 40. Niresh Kumar S, Satya VK, Renukadevi P, Malathi VG, Saranya N, Thiyagu K. Seed-borne nature of MYMV in blackgram varieties. J Pharm Innov. 2024;12:69–74.
  41. 41. Varma A, Dhar AK, Mandal B. MYMV transmission and control in India. In: Mungbean Yellow Mosaic Disease: Proceedings of an International Workshop. Taipei: Asian Vegetable Research and Development Center. 1992. p. 8–27.
  42. 42. Mansoor S, Briddon RW, Zafar Y, Stanley J. Geminivirus disease complexes: An emerging threat. Trends Plant Sci. 2003;8:128–134. https://doi.org/10.1016/S1360-1385(03)00007-4
  43. 43. Meghashree M, Mallikarjun K. Epidemiology of MYMV in relation to whitefly dynamics and weather parameters. Int J Curr Microbiol App Sci. 2018;7:2368–2375. https://doi.org/10.20546/ijcmas.2018.709.294
  44. 44. Satya VK, Alice D, Malathi VG, Velazhahan R. Molecular identification and diversity of yellow mosaic virus in Blackgram. Biochem Cell Arch. 2015;15:475–479.
  45. 45. Naimuddin, Akram M, Gupta S. Identification of MYMIV infecting Vigna mungo var. silvestris. Phytopathol Mediterr. 2011;50:94–100.
  46. 46. Behera P, Kumar S, Mishra M, Senapati A. Transmission relationship of whitefly vector, Bemisia tabaci with yellow mosaic virus disease of greengram. Pharma Innov J. 2023;11:2179–2185.
  47. 47. Maruthi MN, Hillocks RJ, Mtunda KM, Raya D, Muhanna M, Kiozia H, et al. Transmission of cassava brown streak virus by Bemisia tabaci. Phytopathology. 2005;153:307–312. https://doi.org/10.1111/j.1439-0434.2005.00974.x
  48. 48. Capoor SP, Varma PM. Yellow mosaic of Phaseolus lunatus. Curr Sci. 1948;17:152–153.
  49. 49. Ambarish S, Kalleshwaraswamy CM, Venkataravanappa V. Biological and molecular characterization of Mungbean yellow mosaic virus (MYMV) and its vector, Bemisia tabaci cryptic species in greengram. Indian Phytopathol. 2023;76:223–232. https://doi.org/10.1007/s42360-022-00567-9
  50. 50. Muniyappa V, Venkatesh HM, Ramappa HK, Kulkarni RS, Zeidan M, Tarba CY, et al. Tomato leaf curl virus from Bangalore (ToLCV-Ban4): Sequence comparison with Indian ToLCV isolates, detection in plants and insects and vector relationships. Arch Virol. 2000;145:1583–1598. https://doi.org/10.1007/s007050070078
  51. 51. Manjunath B, Neetha J, Muniyappa V, Prameela HA. Status of yellow mosaic virus and whitefly biotypes on mungbean in Karnataka. Legume Res. 2013;36:62–66.
  52. 52. Govindan K, Nagarajn P, Angappan K. Molecular studies on transmission of bean yellow mosaic virus by Bemisia tabaci in mungbean. Afr J Agric Res. 2014;9:2874–2879. https://doi.org/10.5897/AJAR2013.8565
  53. 53. Mahatma L, Pawar DM. Role of seed in the epidemiology of yellow mosaic virus disease in mungbean. J Mycol Plant Pathol. 2015;45:324-329.
  54. 54. Sivagnanapazham K, Karthikeyan G, Pavithran S, Harish S, Murugan M, Latha TKS, et al. Transmission and localization of tomato leaf curl New Delhi virus via whitefly. Mol Biol Rep. 2025;52:358. https://doi.org/10.1007/s11033-025-10467-6
  55. 55. Fadhilaa CH, Lala A, Thuy TBV, Phuong TH, Hidayatb SH, Lee J, et al. Threat of seed-transmissible pepper yellow leaf curl Indonesia virus in chili pepper. Microb Pathog. 2020;143:104132. https://doi.org/10.1016/j.micpath.2020.104132
  56. 56. Kil EJ, Park J, Choi EY, Byun HS, Lee KY, An CG, et al. Seed transmission of tomato yellow leaf curl virus in sweet pepper. Eur J Plant Pathol. 2018;150:759–764. https://doi.org/10.1007/s10658-017-1304-8
  57. 57. Sisodia P, Mahatma L. Detection of BYVMV from various parts of okra plant. Int J Curr Microbiol App Sci. 2020;9:389–395. https://doi.org/10.20546/ijcmas
  58. 58. Alagu K, Renukadevi P, Johnson I, Sankari A, Suganthi G, Shanmugam V, et al. Unveiling the seed-borne and seed transmission nature of Bhendi yellow vein mosaic virus (BYVMV) and Okra enation leaf curl virus (OELCuV) infecting bhendi (Abelmoschus esculentus L.). 3 Biotech. 2025;15. https://doi.org/10.1007/s13205-025-04359-6

Downloads

Download data is not yet available.