Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical diversity and volatile metabolite profiling in Jasminum auriculatum varieties and mutants

DOI
https://doi.org/10.14719/pst.10975
Submitted
30 July 2025
Published
12-11-2025
Versions

Abstract

Phytochemical diversity and volatile metabolite profiling are essential for understanding the medicinal and industrial potential of aromatic plants. Jasminum auriculatum Vahl., widely valued for its fragrance and traditional therapeutic uses, remains underexplored for mutation-induced variation in phytochemical composition. The present study reports original experimental work aimed at characterising the phytochemical diversity and volatile metabolite shifts induced through mutation breeding in J. auriculatum. Two varieties, CO.1 Mullai and Muthu Mullai, along with their mutants, CO.1 MM-HY (2) and MMM-TM (1), were analysed. Fully bloomed fresh flowers were subjected to hexane extraction and extracts were profiled using gas chromatography-mass spectrometry (GC-MS) to identify and quantify volatile and bioactive compounds. The analysis revealed significant qualitative and quantitative variation between parental genotypes and mutants, suggesting mutation-induced reprogramming of metabolic pathways. Notable compounds such as cis-jasmone, phenylethyl alcohol, phytol, benzofuran, linolenic acid and 4H-pyran-4-one were consistently detected, though with variable abundance across genotypes. Mutants displayed elevated levels of pharmacologically important metabolites including 1,2-cyclopentanedione, benzyl β-D-glucoside, trans-cinnamic acid and squalene. The pharmacological significance of these metabolites was inferred from previously reported literature, where they have been associated with antioxidant, antimicrobial, anti-inflammatory, cytotoxic and antiproliferative activities. Overall, the study demonstrates that induced mutation broadens the phytochemical spectrum of J. auriculatum, enhancing its potential beyond ornamental value. These findings provide a foundation for exploiting its bioactive compounds in perfumery, cosmetics and pharmaceutical industries. Further biochemical validation and functional assays are warranted to substantiate the observed pharmacological potential.

References

  1. 1. Barman M, Mitra A. Floral maturation and changing air temperatures influence scent volatiles biosynthesis and emission in Jasminum auriculatum Vahl. Environ Exp Bot. 2021;181:104296. https://doi.org/10.1016/j.envexpbot.2020.104296
  2. 2. Ali IAA, Sharf-Eldin AA, Huauya LA, Hassan KM. Advances in Jasmine (Jasminum spp.) cultivation: molecular breeding, tissue culture and bioinformatics. In: Al-Khayri JM, Jain SM, Wani MA, editors. Breeding of ornamental crops: potted plants and shrubs. Advances in Plant Breeding Strategies, vol 7. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-80060-3_15
  3. 3. Gowdhami T, Rajalakshmi A, Sugumar N. Pharmacognostical and preliminary phytochemical screening of the leaf extract of Jasminum auriculatum Vahl. Int Lett Nat Sci. 2015;43. https://doi.org/10.56431/p-23h92l
  4. 4. Arun M, Satish S, Anima P. Evaluation of wound healing, antioxidant and antimicrobial efficacy of Jasminum auriculatum Vahl. leaves. Avicenna J Phytomed. 2016;6(3):295.
  5. 5. Bhat R, Anand K, Shabaraya A. Therapeutic potential and phytochemical profile of Jasminum auriculatum: A Review. Int J Pharm Sci. 2025;3(1):1999-2004.
  6. 6. Arangale K, Kalokhe S, Jadhav P, Shinde Y, Sutar N. Ethanobotanical uses and phytochemical analysis of Jasminum auriculatum vahl. World J Pharm Res. 2018;7(8):101-3.
  7. 7. Gupta A, Chaphalkar SR. Immunopharmacological activity of flavonoids isolated from Mesua ferrea, Ficus benghalensis and Jasminum auriculatum. Curr Life Sci. 2016;2(2):49-54.
  8. 8. Al-Rubaye AF, Hameed IH, Kadhim MJ. A review: uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Int J Toxicol Pharmacol Res. 2017;9(1):81-5. https://doi.org/10.25258/ijtpr.v9i01.9042
  9. 9. Krishnaveni M, Dhanalakshmi R, Nandhini N. GC-MS analysis of phytochemicals, fatty acid profile, antimicrobial activity of Gossypium seeds. Int J Pharm Sci Rev Res. 2014;27(1):273-6.
  10. 10. El-Ghorab A, Mahgoub M, Bekheta M. Effect of some bioregulators on the chemical composition of essential oil and its antioxidant activity of Egyptian carnation (Dianthus caryophyllus L.). J Essent Oil Bear Plants. 2006;9(3):214-22. https://doi.org/10.1080/0972060X.2006.10643494
  11. 11. Igwe OU, Okwu DE. Isolation, characterization and antibacterial activity of 3-Hydroxy-2, 2-bis (6-methoxy-3-methyl-2, 3-dihydrobenzofuran-2-yl) Propanal from the stem exudates of brachystegia eurycoma harms. Der Pharma Chemica. 2013;5(2):39-44.
  12. 12. Wang DC, Sun SH, Shi LN, Qiu DR, Li X, Wei DS, et al. Chemical composition, antibacterial and antioxidant activity of the essential oils of Metaplexis japonica and their antibacterial components. Int J Food Sci Technol. 2015;50(2):449-57. https://doi.org/10.1111/ijfs.12645
  13. 13. Maiti MK, Mahata PP, Banerjee A, Mandal S, Ashraf GJ, Dua TK, et al. Antioxidant, antidiabetic and anti-inflammatory activities of Piper chaba stem extracts and metabolomic profile by GC-MS and HPTLC. Vegetos. 2024:1-14. https://doi.org/10.1007/s42535-024-01086-w
  14. 14. de Moura Fé TC, de Castro Ribeiro AD, Melo JC, da Rocha Tomé A, Vieira-Neto AE, Silva ARAe, et al. Cis-Jasmone: phytopharmaceutical potential for the treatment of skin inflammation. Revista Brasileira de Farmacognosia (Brazilian Journal of Pharmacognosy). 2022;32(3):440-6. https://doi.org/10.1007/s43450-022-00271-9
  15. 15. Chen P, Chen P, Wang X. Design, synthesis and bioactivity evaluation of cinnamic acid derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem Lett. 2025;116:130036. https://doi.org/10.1016/j.bmcl.2024.130036
  16. 16. Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, et al. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules. 2015;20(9):17339-61. https://doi.org/10.3390/molecules200917339
  17. 17. Naikwadi PH, Phatangare ND, Mane DV. Ethanopharmacological anti-inflammatory study of phytol in ethanolic extract of Woodfordia floribunda Salisb. Ann Phytomedicine. 2022;11(2):426-37. https://doi.org/10.54085/ap.2022.11.2.52
  18. 18. Alesiani D, Canini A, D’Abrosca B, DellaGreca M, Fiorentino A, Mastellone C, et al. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010;118(2):199-207. https://doi.org/10.1016/j.foodchem.2009.04.098
  19. 19. Ma’ruf NQ, Hotmian E, Tania AD, Antasionasti I, Fatimawali, Tallei TE, editors. In silico analysis of the interactions of Clitoria ternatea (L.) bioactive compounds against multiple immunomodulatory receptors. AIP Conference Proceedings; 2022: AIP Publishing LLC. https://doi.org/10.1063/5.0104030
  20. 20. Yadav JP, Pathak P, Yadav S, Singh A, Palei NN, Verma A. In-vitro evaluation of antidiabetic, antioxidant and anti-inflammatory activities in Mucuna pruriens seed extract. Clin Phytosci. 2024;10(1):21. https://doi.org/10.1186/s40816-024-00381-y
  21. 21. Rameshkumar R, Satish L, Pandian S, Rathinapriya P, Rency AS, Shanmugaraj G, et al. Production of squalene with promising antioxidant properties in callus cultures of Nilgirianthus ciliatus. Industrial Crops and Products. 2018;126:357-67. https://doi.org/10.1016/j.indcrop.2018.10.031
  22. 22. Rajput D, Saikia L. GC-MS analysis of phyto components of the musky smelling Dendrobium-Dendrobium moschatum. Ecol Environ Conserv. 2020;26:215-20.
  23. 23. Dubey D, Patnaik R, Ghosh G, Padhy RN. In vitro antibacterial activity, gas chromatography-mass spectrometry analysis of Woodfordia fruticosa Kurz. leaf extract and host toxicity testing with in vitro cultured lymphocytes from human umbilical cord blood. Osong Public Health and Research Perspectives. 2014;5(5):298-312. https://doi.org/10.1016/j.phrp.2014.08.001
  24. 24. Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, et al. Phytochemical profiling and therapeutic potential of thyme (thymus spp.): a medicinal herb. Food Science & Nutrition. 2024;12(12):9893-912. https://doi.org/10.1002/fsn3.4563
  25. 25. Nithya RN, Nandhini RS, Kumar UK. GC-MS analysis of Curcuma zedoaria tuber extracts and its antibacterial activity. Int J Pharm Biol Sci. 2013;3(3):216-24.
  26. 26. Pickett JA, Birkett M, Blassioli Moraes M, Bruce T, Chamberlain K, Gordon-Weeks R, et al. cis-Jasmone as allelopathic agent in inducing plant defence. Allelopath J. 2007;19(1):109-18.
  27. 27. Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem. 2012;12(8):749-67. https://doi.org/10.2174/138955712801264792
  28. 28. Kaushik A, Patel SA, Sahoo S, Rahvar K. Synthesis and biological activities of pyran derivatives in the new millennium. Pharma Sci Monit. 2024;15(2).
  29. 29. Mahdavi M. Identification of chemical compounds and antimicrobial effects of essential oils of Artemisia scoparia and A. Aucheri. Int J Farm & Alli Sci. 2015;4(6):514-21.
  30. 30. Chand K, Hiremathad A, Singh M, Santos MA, Keri RS. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol Rep. 2017;69(2):281-95. https://doi.org/10.1016/j.pharep.2016.11.007
  31. 31. Emniyet AA, Avci E, Ozcelik B, Avci GA, Kose DA. Antioxidant and antimicrobial activities with GC/MS analysis of the Morus alba L. leaves. Hittite J Sci Eng. 2014;1(1):37-41. https://doi.org/10.17350/HJSE19030000006
  32. 32. Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14(1):540-54. https://doi.org/10.3390/molecules14010540
  33. 33. Ahmad S, Ullah F, Zeb A, Ayaz M, Ullah F, Sadiq A. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: chemical characterization of chloroform fraction and identification of bioactive compounds. BMC Complement Altern Med. 2016;16:1-10. https://doi.org/10.1186/s12906-016-1302-y

Downloads

Download data is not yet available.