Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Environmentally friendly agronomic strategies for managing abiotic stresses in crops

DOI
https://doi.org/10.14719/pst.10982
Submitted
30 July 2025
Published
12-01-2026

Abstract

Most of the agricultural land undergoes abiotic stress, which can significantly reduce crop production both qualitatively and quantitatively. Numerous abiotic stressors, including temperature stress (heat and cold), salinity, drought, heavy metal contamination, nutrient deficiency or toxicity have negative impact on crops and limit their productivity and quality. Understanding the mechanisms of major abiotic stressors and their negative impacts on crop yield helps to improve crop resilience and productivity through agronomic management. Biochar, kaolin, super absorbents, seaweed extracts, yeast extracts and nanoparticles are the promising environment friendly agronomic approaches that can mitigate the negative effects of abiotic stresses on crops and improve their productivity. This review mainly focuses on different abiotic stressors, their impacts on crop productivity and environment friendly management strategies.

References

  1. 1. Intergovernmental Panel on Climate Change (IPCC). Climate change 2014 synthesis report. Geneva: IPCC; 2014.
  2. 2. Mantri N, Patade V, Penna S, Ford R, Pang E. Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad M, editors. Abiotic stress responses in plants. New York: Springer; 2012. p. 1-19.
  3. 3. Ibrahim W, Zhu YM, Chen Y, Qiu CW, Zhu S, Wu F. Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiol Plant. 2019;165(2):343-55. https://doi.org/10.1111/ppl.12862
  4. 4. Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy. 2020;10(7):938. https://doi.org/10.3390/agronomy10070938
  5. 5. Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exp Bot. 2021;72(18):6123-39. https://doi.org/10.1093/jxb/erab276
  6. 6. Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic stress in crop production. Int J Mol Sci. 2023;24(7):6603. https://doi.org/10.3390/ijms24076603
  7. 7. Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci. 2013;14:4885-911. https://doi.org/10.3390/ijms14034885
  8. 8. Salehi-Lisar SY, Bakhshayeshan-Agdam H. Drought stress in plants: causes, consequences and tolerance. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS, editors. Drought stress tolerance in plants. Cham: Springer; 2016. p. 1-16. https://doi.org/10.1007/978-3-319-28899-4_1
  9. 9. Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci. 2011;180:672-8. https://doi.org/10.1016/j.plantsci.2011.01.009
  10. 10. Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB. Flooding and plant growth. Ann Bot. 2003;91(2):107-9. https://doi.org/10.1093/aob/mcg014
  11. 11. Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC. Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant. 2008;52(3):401-12. https://doi.org/10.1007/s10535-008-0084-6
  12. 12. Waters I, Kuiper PJC, Watkin E, Greenway H. Effects of anoxia on wheat seedlings I. Interaction between anoxia and other environmental factors. J Exp Bot. 1991;42(244):1427-35.
  13. 13. Pezeshki SR. Wetland plant responses to soil flooding. Environ Exp Bot. 2001;46:299-312. https://doi.org/10.1016/S0098-8472(01)00107-1
  14. 14. Food and Agriculture Organization (FAO). Status of the world’s soil resources (SWSR): main report. Rome: FAO; 2015.
  15. 15. Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical and molecular characterization. Int J Genomics. 2014;2014:701596. https://doi.org/10.1155/2014/701596
  16. 16. Turner NC, Kramer PJ, editors. Adaptation of plants to water and high temperature stress. New York: John Wiley & Sons; 1980.
  17. 17. Firmansyah, Argosubekti N. A review of heat stress signalling in plants. IOP Conf Ser Earth Environ Sci. 2020;484:012041. https://doi.org/10.1088/1755-1315/484/1/012041
  18. 18. Machado S, Paulsen GM. Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil. 2001;233:179-87. https://doi.org/10.1023/A:1010346601643
  19. 19. Morales D, Rodríguez P, Dell’Amico J, Nicolás E, Torrecillas A, Sánchez-Blanco MJ. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant. 2003;47:203-8. https://doi.org/10.1023/B:BIOP.0000022252.70836.fc
  20. 20. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: an overview. Environ Exp Bot. 2007;61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  21. 21. Gates DM. Transpiration and leaf temperature. Annu Rev Plant Physiol. 1968;19:211-38. https://doi.org/10.1146/annurev.pp.19.060168.001235
  22. 22. Paupière MJ, Van Heusden AW, Bovy AG. The metabolic basis of pollen thermotolerance: perspectives for breeding. Metabolites. 2014;4(4):889-920. https://doi.org/10.3390/metabo4040889
  23. 23. Sun X, Zhu Z, Zhang L, Fang L, Zhang J, Wang Q, et al. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic. 2019;243:320-6. https://doi.org/10.1016/j.scienta.2018.08.055
  24. 24. Krasensky J, Jonak C. Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63(4):1593-608. https://doi.org/10.1093/jxb/err460
  25. 25. Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 1992;15(6):719-25. https://doi.org/10.1111/j.1365-3040.1992.tb01014.x
  26. 26. Sarkar S, Khatun M, Era FM, Islam AK, Anwar M, Danish S, et al. Abiotic stresses: alteration of composition and grain quality in food legumes. Agronomy. 2021;11(11):2238. https://doi.org/10.3390/agronomy11112238
  27. 27. Ennos AR. Wind as an ecological factor. Trends Ecol Evol. 1997;12(3):108-11. https://doi.org/10.1016/S0169-5347(96)10066-5
  28. 28. Anten NP, Alcalá-Herrera R, Schieving F, Onoda Y. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol. 2010;188(2):554-64. https://doi.org/10.1111/j.1469-8137.2010.03379.x
  29. 29. Jaffe MJ, Forbes S. Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Mol Biol. 1993;12(3):313-24. https://doi.org/10.1007/BF00027213
  30. 30. Arnon DJ. Trace elements in plant physiology. In: Wallace T, editor. Chronica Botanica. Waltham (MA); 1954.
  31. 31. Xu G, Magen H, Tarchitzky J, Kafkafi U. Advances in chloride nutrition of plants. Adv Agron. 1999;68:97-110. https://doi.org/10.1016/S0065-2113(08)60844-5
  32. 32. Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising CO₂: mechanisms and environmental interactions. Plant Cell Environ. 2007;30(3):258-70. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  33. 33. Takagi D, Inoue H, Odawara M, Shimakawa G, Miyake C. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis. Plant Cell Physiol. 2014;55(2):333-40. https://doi.org/10.1093/pcp/pcu007
  34. 34. Lutze J, Roden J, Holly C, Wolfe J, Egerton J, Ball M. Elevated atmospheric CO₂ promotes frost damage in evergreen tree seedlings. Plant Cell Environ. 2002;21(6):631-5. https://doi.org/10.1046/j.1365-3040.1998.00296.x
  35. 35. Taiz L, Zeiger E. Plant physiology. 4th ed. Sunderland (MA): Sinauer Associates; 2006.
  36. 36. Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci. 2008;194(3):193-9. https://doi.org/10.1111/j.1439-037X.2008.00305.x
  37. 37. Thitisaksakul M, Jiménez RC, Arias MC, Beckles DM. Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci. 2012;56(1):67-80. https://doi.org/10.1016/j.jcs.2012.04.002
  38. 38. Ali Q, Anwar F, Ashraf M, Saari N, Perveen R. Ameliorating effects of exogenously applied proline on seed composition, oil quality and antioxidant activity of maize under drought stress. Int J Mol Sci. 2013;14(1):818-35. https://doi.org/10.3390/ijms14010818
  39. 39. Ballmer T, Hebeisen T, Wüthrich R, Gut F. Potential for drip irrigation in potato production under changing climatic conditions. Agrarforschung Schweiz. 2012;3(5):244-51.
  40. 40. Ahmad P, Jamsheed S, Hameed A, Rasool S, Sharma I, Azooz MM, Hasanuzzaman M. Drought stress-induced oxidative damage and antioxidants in plants. In: Ahmad P, editor. Oxidative damage to plants: antioxidant networks and signaling. Waltham (MA): Academic Press; 2014. p. 345-67. https://doi.org/10.1016/B978-0-12-799963-0.00011-3
  41. 41. Garg BK. Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric. 2003;27:1-8.
  42. 42. McWilliams D. Drought strategies for cotton. Cooperative Extension Service Circular 582. New Mexico State University; 2003.
  43. 43. Lindhauer MG. Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Z Pflanzenernahr Bodenk. 1985;148(6):654-69. https://doi.org/10.1002/jpln.19851480608
  44. 44. Food and Agriculture Organization (FAO). The impact of disasters and crises on agriculture and food security. Rome: FAO; 2017. p.168.
  45. 45. Voesenek LACJ, Jackson MB, Toebes AHW, Vriezen WH, Colmer TD. Desubmergence-induced ethylene production in Rumex palustris: regulation and ecophysiological significance. Plant J. 2003;33(2):341-52. https://doi.org/10.1046/j.1365-313x.2003.01632.x
  46. 46. Shabala S, editor. Plant stress physiology. Wallingford: CABI; 2017.
  47. 47. Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell. 2011;23(1):412-27. https://doi.org/10.1105/tpc.110.080325
  48. 48. Chen Y, Song J, Yan C, Hong X. Effects of submergence stress at the vegetative growth stage on hybrid rice growth and grain yield in China. Chil J Agric Res. 2021;81(2):191-201. https://doi.org/10.4067/S0718-58392021000200191
  49. 49. Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol. 2014;26:115-24. https://doi.org/10.1016/j.copbio.2013.12.004
  50. 50. López-Berenguer C, García-Viguera C, Carvajal M. Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants? Plant Soil. 2006;279(1):13-23. https://doi.org/10.1007/s11104-005-7010-x
  51. 51. Alvino A, D’Andria R, Delfine S, Lavini A, Zanetti P. Effect of water and salinity stress on radiation absorption and efficiency in sunflower. Ital J Agron. 2000;4(2):53-60.
  52. 52. Marcelis LFM, Van Hooijdonk J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil. 1999;215:57-64. https://doi.org/10.1023/A:1004742713538
  53. 53. Machado RMA, Serralheiro RP. Soil salinity: effect on vegetable crop growth and management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3(2):30. https://doi.org/10.3390/horticulturae3020030
  54. 54. Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, et al. 1-Methylcyclopropene modulates physiological, biochemical and antioxidant responses of rice to different salt stress levels. Front Plant Sci. 2019;10:124. https://doi.org/10.3389/fpls.2019.00124
  55. 55. Muhammad S, Ditta A, Iqbal MS, Hussain SB, Khan MI, Ramzan M, et al. Effect of salinity stress on cotton growth and role of marker-assisted breeding and agronomic practices for salinity tolerance. Scholars Rep. 2018;4(1):1-13.
  56. 56. Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun. 2020;11(1):5441. https://doi.org/10.1038/s41467-020-19320-9
  57. 57. Soda N, Gupta BK, Anwar K, Sharan A, Singla-Pareek SL, Pareek A. Rice intermediate filament OsIF stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep. 2018;8(1):4072. https://doi.org/10.1038/s41598-018-22131-0
  58. 58. Zhang G, Lian C, Yun L, Zhang S, Tang Z, Zheng H, et al. Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Sci. 2009;16(1):65-71. https://doi.org/10.1016/S1672-6308(08)60058-X
  59. 59. Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 2003;164(5):873-81. https://doi.org/10.1016/S0168-9452(03)00076-1
  60. 60. Wallwork MAB, Jenner CF, Logue SJ, Sedgley M. Effect of high temperature during grain filling on the structure of developing and malted barley grains. Ann Bot. 1998;82:587-99. https://doi.org/10.1006/anbo.1998.0721
  61. 61. Thomas JM, Boote KJ, Allen LH, Gallo-Meagher M, Davis JM. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003;43(4):1548-57. https://doi.org/10.2135/cropsci2003.1548
  62. 62. Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, et al. Drought and heat stress effects on seed filling in food crops. Front Plant Sci. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
  63. 63. Sita K, Sehgal A, Bhandari K, Kumar J, Kumar S, Singh S, et al. Impact of heat stress during seed filling on seed quality and yield in lentil (Lens culinaris Medikus). J Sci Food Agric. 2018;98(13):5134-41. https://doi.org/10.1002/jsfa.9054
  64. 64. Canvin DT. Effect of temperature on oil content and fatty acid composition of oils from several oilseed crops. Can J Bot. 1965;43:63-9. https://doi.org/10.1139/b65-008
  65. 65. Harris HC, McWilliam JR, Mason WK. Influence of temperature on oil content and composition of sunflower seed. Aust J Agric Res. 1978;29(6):1203-12. https://doi.org/10.1071/AR9781203
  66. 66. Chaturvedi AK, Bahuguna RN, Pal M, Shah D, Maurya S, Jagadish KS. Elevated CO₂ and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice. Field Crops Res. 2017;206:149-57. https://doi.org/10.1016/J.FCR.2017.02.018
  67. 67. Yan H, Wang C, Liu K, Tian X. Heat stress reduces grain weight and quality in rice and effects are aggravated by low relative humidity. PeerJ. 2021;9:e11218. https://doi.org/10.7717/peerj.11218
  68. 68. Labuschagne MT, Elago O, Koen E. Influence of temperature extremes on quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci. 2009;49:184-9. https://doi.org/10.1016/j.jcs.2008.09.001
  69. 69. Balla K, Rakszegi M, Li Z, Bekes F, Bencze S, Veisz O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci. 2011;29(2):117-28. https://doi.org/10.17221/227/2010-CJFS
  70. 70. Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, et al. TSV protects rice chloroplasts from cold stress by interacting with plastidic thioredoxin Z. New Phytol. 2017;215(1):240-55. https://doi.org/10.1111/nph.14482
  71. 71. Rood SB, Major DJ, Jones MD, Pharis RP. Low temperature eliminates heterosis for growth and gibberellin content in maize. Crop Sci. 1985;25(6):1063-8. https://doi.org/10.2135/cropsci1985.0011183X002500060040x
  72. 72. Laine P, Bigot J, Ourry A, Boucaud J. Effects of low temperature on nitrate uptake and nitrogen transport in Secale cereale L. and Brassica napus L. New Phytol. 1994;127(4):675-83. https://doi.org/10.1111/j.1469-8137.1994.tb02970.x
  73. 73. Serrano M, Robertson AE. Effect of cold stress on damping-off of soybean caused by Pythium sylvaticum. Plant Dis. 2018;102(11):2194-200. https://doi.org/10.1094/PDIS-12-17-1963-RE
  74. 74. Hu CM, Hou XL, Wang M. Effects of low temperature on photosynthetic and fluorescence parameters of non-heading Chinese cabbage. Acta Bot Boreali-Occident Sin. 2008;28:2478-84.
  75. 75. Kazemi-Shahandashti SS, Maali-Amiri R. Global insights into protein responses to cold stress in plants. J Plant Physiol. 2018;226:123-35. https://doi.org/10.1016/j.jplph.2018.03.022
  76. 76. Li Y, Ren K, Hu M, He X, Gu K, Hu B, et al. Cold stress during harvest affects tobacco leaf quality and curing characteristics. BMC Plant Biol. 2021;21(1):131. https://doi.org/10.1186/s12870-021-02895-w
  77. 77. Cary JW. Frost damage in seedlings. Crops Soils. 1975;27(1):16-8.
  78. 78. Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM. Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci. 2009;60(6):501-16. https://doi.org/10.1071/CP08427
  79. 79. Kumar M. Crop plants and abiotic stresses. J Biomol Res Ther. 2013;3(1). https://doi.org/10.4172/2167-7956.1000e125
  80. 80. Abedin MJ, Cotter-Howells J, Meharg AA. Arsenic uptake and accumulation in rice irrigated with contaminated water. Plant Soil. 2002;240(2):311-19. https://doi.org/10.1023/A:1015792723288
  81. 81. Cox MS, Bell PF, Kovar JL. Differential tolerance of canola to arsenic when grown hydroponically or in soil. J Plant Nutr. 1996;19(12):1599-610. https://doi.org/10.1080/01904169609365224
  82. 82. Yourtchi MS, Bayat HR. Cadmium toxicity effects on growth and nutrient content of durum wheat. Int J Agric Crop Sci. 2013;6(15):1099-103.
  83. 83. Jayakumar K, Rajesh M, Baskaran L, Vijayarengan P. Changes in nutritional metabolism of tomato exposed to cobalt chloride. Int J Food Nutr Saf. 2013;4(2):62-9.
  84. 84. Jayakumar K, Jaleel CA, Azooz MM. Phytochemical changes in green gram under cobalt stress. Glob J Mol Sci. 2008;3(2):46-9.
  85. 85. Nematshahi N, Lahouti M, Ganjeali A. Chromium accumulation and growth response of onion (Allium cepa). Eur J Exp Biol. 2012;2(4):969-74.
  86. 86. Asrar Z, Khavari-Nejad RA, Heidari H. Excess manganese effects on pigments of Mentha spicata. Arch Agron Soil Sci. 2005;51(1):101-7. https://doi.org/10.1080/03650340400026602
  87. 87. Doncheva S, Georgieva K, Vassileva V, Stoyanova Z, Popov N, Ignatov G. Effects of succinate on manganese toxicity in pea plants. J Plant Nutr. 2005;28(1):47-62. https://doi.org/10.1081/PLN-200042161
  88. 88. Shenker M, Plessner OE, Tel-Or E. Manganese nutrition effects on tomato growth and antioxidant activity. J Plant Physiol. 2004;161(2):197-202. https://doi.org/10.1078/0176-1617-00931
  89. 89. Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, et al. Effects of lead on growth attributes of maize. Agric Sci. 2013;4(5):262-5. https://doi.org/10.4236/as.2013.45037
  90. 90. Manivasagaperumal R, Balamurugan S, Thiyagarajan G, Sekar J. Effect of zinc on germination and seedling growth of cluster bean. Curr Bot. 2011;2(5):11-15.
  91. 91. Doncheva S, Stoynova Z, Velikova V. Influence of succinate on zinc toxicity in pea plants. J Plant Nutr. 2001;24(6):789-804. https://doi.org/10.1081/PLN-100103774
  92. 92. Kabata-Pendias A. Trace elements in soils and plants. 3rd ed. Boca Raton (FL): CRC Press; 2001. https://doi.org/10.1201/9781420039900
  93. 93. Armbrust DV. Physiological responses to wind and sandblast damage in grain sorghum. Agron J. 1982;74(1):133-5. https://doi.org/10.2134/agronj1982.00021962007400010034x
  94. 94. MacKerron DKL. Wind damage to the surface of strawberry leaves. Ann Bot. 1976;40(2):351-4. https://doi.org/10.1093/oxfordjournals.aob.a085137
  95. 95. Feng J, Huang P, Wan X. Interactive effects of wind and light on growth and architecture of poplar saplings. Ecol Res. 2019;34:94-105. https://doi.org/10.1111/1440-1703.1013
  96. 96. Xiong FS, Day TA. Effects of solar UV-B radiation on photosynthesis and biomass of Antarctic vascular plants. Plant Physiol. 2001;125(2):738-51. https://doi.org/10.1104/pp.125.2.738
  97. 97. Lal N. Effects of acid rain on plant growth and development. E-J Sci Technol. 2016;11(5):85-101.
  98. 98. Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA. 1999;96(11):6529-34. https://doi.org/10.1073/pnas.96.11.6529
  99. 99. Reddy KJ. Nutrient stress. In: Physiology and molecular biology of stress tolerance in plants. Dordrecht: Springer; 2006. p.187-217. https://doi.org/10.1007/1-4020-4225-6_7
  100. 100. Fredeen AL, Rao IM, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in soybean. Plant Physiol. 1989;89(1):225-30. https://doi.org/10.1104/pp.89.1.225
  101. 101. Barry DAJ, Miller MH. Phosphorus nutritional requirement of maize seedlings for maximum yield. Agron J. 1989;81:95–9. https://doi.org/10.2134/agronj1989.00021962008100010017x
  102. 102. Toyota K, Koizumi N, Sato F. Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco. J Exp Bot. 2003;54:961–9. https://doi.org/10.1093/jxb/erg095
  103. 103. Lindhauer MG. Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Z Pflanzenernahr Bodenk. 1985;148:654–69. https://doi.org/10.1002/jpln.19851480608
  104. 104. Willenbrink J. On the relationships between protein turnover and sulfur supply of chloroplasts. J Plant Physiol. 1967;56:427–38.
  105. 105. Baszynski T, Warcholowa M, Krupa Z, Tukendorf A, Krol M, Wolinska D. Effect of magnesium deficiency on photochemical activities of rape and buckwheat chloroplasts. J Plant Physiol. 1980;99:295–303. https://doi.org/10.1016/S0044-328X(80)80143-7
  106. 106. Sharma S, Sanwal GG. Effect of iron deficiency on the photosynthetic system of maize. J Plant Physiol. 1992;140:527–30. https://doi.org/10.1016/S0176-1617(11)80782-0
  107. 107. Dave IC, Kannan S. Boron deficiency and its associated enhancement of RNase activity in bean plants. J Plant Physiol. 1980;97:261–3. https://doi.org/10.1016/S0044-328X(80)80078-X
  108. 108. Robertson GA, Loughman BC. Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba L. New Phytol. 1974;73:291–8. https://doi.org/10.1111/j.1469-8137.1974.tb04762.x
  109. 109. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance antioxidant enzyme activities in bean leaves. Plant Physiol. 1992;98:1222–7. https://doi.org/10.1104/pp.98.4.1222
  110. 110. Li J, Fan H, Song Q, Jing L, Yu H, Li R, et al. Physiological and molecular bases of the boron deficiency response in tomato. Hortic Res. 2023;10:uhad229. https://doi.org/10.1093/hr/uhad229
  111. 111. Dong J, Gruda N, Lam SK, Li X, Duan Z. Effects of elevated CO₂ on nutritional quality of vegetables. Front Plant Sci. 2018;9:924. https://doi.org/10.3389/fpls.2018.00924
  112. 112. Broberg M, Högy P, Pleijel H. CO₂-induced changes in wheat grain composition. Agronomy. 2017;7:32. https://doi.org/10.3390/agronomy7020032
  113. 113. Taub DR, Wang XZ. Why are nitrogen concentrations lower under elevated CO₂? J Integr Plant Biol. 2008;50:1365–74. https://doi.org/10.1111/j.1744-7909.2008.00754.x
  114. 114. Bloom AJ, Burger M, Asensio JSR, Cousins AB. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science. 2010;328:899–903. https://doi.org/10.1126/science.1186440
  115. 115. Högy P, Fangmeier A. Atmospheric CO₂ enrichment affects potato tuber quality. Eur J Agron. 2009;30:85–94. https://doi.org/10.1016/j.eja.2008.07.006
  116. 116. Piñero MC, Pérez-Jiménez M, López-Marín J, del Amor FM. Fruit quality of sweet pepper under saline irrigation and foliar calcium application. J Sci Food Agric. 2018;98:1071–8. https://doi.org/10.1002/jsfa.8557
  117. 117. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, et al. Increasing CO₂ threatens human nutrition. Nature. 2014;510:139–42. https://doi.org/10.1038/nature13179
  118. 118. Högy P, Fangmeier A. Effects of elevated atmospheric CO₂ on wheat grain quality. J Cereal Sci. 2008;48:580–91. https://doi.org/10.1016/j.jcs.2008.01.006
  119. 119. Hussain S, Hussain S, Qadir T, Khaliq A, Ashraf U, Parveen A, et al. Drought stress in plants: implications and mitigation strategies. Plant Sci Today. 2019;6:389–402. https://doi.org/10.14719/pst.2019.6.4.578
  120. 120. Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN. Breeding for drought tolerance in rice. Field Crops Res. 2008;107:221–31. https://doi.org/10.1016/j.fcr.2008.02.007
  121. 121. Ahmad A, Aslam Z, Javed T, Hussain S, Raza A, Shabbir R, et al. Screening wheat genotypes for drought tolerance. Agronomy. 2022;12:287. https://doi.org/10.3390/agronomy12020287
  122. 122. Dietz KJ, Zörb C, Geilfus CM. Drought and crop yield. Plant Biol. 2021;23:881–93. https://doi.org/10.1111/plb.13304
  123. 123. Tian L, Zhang Y, Chen P, Zhang F, Li J, Yan F, et al. Effects of waterlogging regime on crop yield: a meta-analysis. Front Plant Sci. 2021;12:634898. https://doi.org/10.3389/fpls.2021.634898
  124. 124. Zhen B, Zhou X, Lu H, Li H. Effects of waterlogging on rice growth at jointing–booting stage. Water. 2024;16:1981. https://doi.org/10.3390/w16141981
  125. 125. Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D. Yield and nutritional responses of soybean to waterlogging. Irrig Sci. 2010;28:135–42. https://doi.org/10.3390/w16141981
  126. 126. Jovović Z, Broćić Z, Velimirović A, Dolijanović Ž, Komnenić A. Influence of flooding on potato productivity. Acta Hortic. 2021;1320:133–8. https://doi.org/10.17660/ActaHortic.2021.1320.17
  127. 127. Li Y, Guan K, Schnitkey GD, DeLucia E, Peng B. Excessive rainfall and maize yield loss in the USA. Glob Chang Biol. 2019;25:2325–37. https://doi.org/10.1111/gcb.14628
  128. 128. Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, et al. Salinity stress impacts and tolerance mechanisms in crops. Front Plant Sci. 2023;14:1241736. https://doi.org/10.3389/fpls.2023.1241736
  129. 129. Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, et al. Endophytic bacteria alleviate salt stress in soybean. Ann Microbiol. 2019;69:797–808. https://doi.org/10.1007/s13213-019-01470-x
  130. 130. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global crop yields. Proc Natl Acad Sci U S A. 2017;114:9326–31. https://doi.org/10.1073/pnas.1701762114
  131. 131. Modarresi M, Mohammadi V, Zali A, Mardi M. Response of wheat yield to high temperature. Cereal Res Commun. 2010;38:23–31. https://doi.org/10.1556/CRC.38.2010.1.3
  132. 132. Aghamolki MTK, Yusop MK, Oad FC, Zakikhani H, Jaafar HZ, Musa MH. Heat stress effects on rice yield. J Food Agric Environ. 2014;12:741–6.
  133. 133. Li T, Zhang X, Liu Q, Liu J, Chen Y, Sui P. Yield penalty of maize under heat stress. J Integr Agric. 2022;21:2465–76. https://doi.org/10.1016/j.jia.2022.07.013
  134. 134. Yang L, Song W, Xu C, Sapey E, Jiang D, Wu C. Effects of high night temperature on soybean yield. Front Plant Sci. 2023;14:1065604. https://doi.org/10.3389/fpls.2023.1065604
  135. 135. Hu XY, Zhang ZG, Dai YJ, Qian ZY, Chen BL, Wang YH. Effect of increased temperature on cotton fiber yield and quality. Yingyong Shengtai Xuebao. 2013;24:3501–7.
  136. 136. Rykaczewska K. Effect of high temperature on potato yield and tuber defects. Am J Potato Res. 2015;92:339–49. https://doi.org/10.1007/s12230-015-9436-x
  137. 137. Ji H, Xiao L, Xia Y, Song H, Liu B, Tang L, et al. Effects of low temperature stress on wheat yield. Agric For Meteorol. 2017;243:33–42. https://doi.org/10.1016/j.agrformet.2017.04.016
  138. 138. Žydelis R, Weihermüller L, Herbst M, Klosterhalfen A, Lazauskas S. Effects of water and cold stress on maize development. Agric For Meteorol. 2018;263:169–79. https://doi.org/10.1016/j.agrformet.2018.08.011
  139. 139. Unan R, Genctan T, Pedroso RM. Cold stress reduces rice grain yield. Rev Bras Eng Agric Ambient. 2022;26:947–52. https://doi.org/10.1590/1807-1929/agriambi.v26n12p947-952
  140. 140. Staniak M, Czopek K, Stępień-Warda A, Kocira A, Przybyś M. Cold stress alters soybean yield and seed quality. Agronomy. 2021;11:2059. https://doi.org/10.3390/agronomy11102059
  141. 141. Zhao Y, Zhu Y, Feng S, Zhao T, Wang L, Zheng Z, et al. Impact of temperature on cotton yield in Xinjiang. NPJ Sustain Agric. 2024;2:43. https://doi.org/10.1038/s44264-024-00043-z
  142. 142. Chang DC, Sohn HB, Cho JH, Im JS, Jin YI, Do GR, et al. Freezing and frost damage of potato plants. Potato Res. 2014;57:99–110. https://doi.org/10.1007/s11540-014-9253-5
  143. 143. Singh S, Aggarwal PK. Effect of heavy metals on crop biomass and yield. Indian J Agric Sci. 2006;76:688–91.
  144. 144. Arif N, Sharma NC, Yadav V, Ramawat N, Dubey NK, Tripathi DK, et al. Heavy metal stress in rice crops. J Plant Biol. 2019;62:239–53. https://doi.org/10.1007/s12374-019-0112-4
  145. 145. Vasilachi IC, Stoleru V, Gavrilescu M. Heavy metal impacts on cereal crop development. Agriculture. 2023;13:1983. https://doi.org/10.3390/agriculture13101983
  146. 146. Tyagi V, Nagargade M, Singh RK. Agronomic interventions for drought management. In: Rakshit A, Singh HB, Singh AK, Singh US, Fraceto L, editors. New frontiers in stress management for durable agriculture. Singapore: Springer; 2020. p. 461–76. https://doi.org/10.1007/978-981-15-1322-0_24
  147. 147. Shao Y, Xie Y, Wang C, Yue J, Yao Y, Li X, et al. Soil conservation tillage effects on wheat–maize systems. Eur J Agron. 2016;81:37–45. https://doi.org/10.1016/j.eja.2016.08.014
  148. 148. Bhan S, Behera UK. Conservation agriculture in India. Int Soil Water Conserv Res. 2014;2:1–12. https://doi.org/10.1016/S2095-6339(15)30053-8
  149. 149. Triplett GB Jr, Dick WA. No-tillage crop production. Agron J. 2008;100:S153–65. https://doi.org/10.2134/agronj2007.0005c
  150. 150. Teame G, Tsegay A, Abrha B. Effect of organic mulching on sesame yield. Int J Agron. 2017;2017:4767509. https://doi.org/10.1155/2017/4767509
  151. 151. Mandal TK, Maitra S, Goswami S, Das P. Impact of abiotic stress on crops. In: Sairam M, Santosh DT, Gaikwad DJ, Maitra S, editors. Advances in modern agricultural practices. New Delhi: New Delhi Publishers; 2024. p. 83.
  152. 152. Singh A, Singh D, Kang J, Aggarwal N. Management practices to mitigate heat stress in wheat. IIOAB J. 2011;2:11–22.
  153. 153. Ding Z, Kheir AMS, Ali OAM, Hafez EM, ElShamey EA, Zhou Z, et al. Vermicompost and deep tillage improve saline soils. J Environ Manage. 2021;277:111388. https://doi.org/10.1016/j.jenvman.2020.111388
  154. 154. Rehman A, Farooq M, Ozturk L, Asif M, Siddique KHM. Zinc nutrition in wheat-based systems. Plant Soil. 2018;422:283–315. https://doi.org/10.1007/s11104-017-3507-3
  155. 155. Abedi T, Gavanji S, Mojiri A. Lead and zinc uptake and toxicity in maize. Plants. 2022;11:1922. https://doi.org/10.3390/plants11151922
  156. 156. Wallander S, Aillery M, Hellerstein D, Hand M. Role of conservation programs in drought adaptation. Econ Res Serv ERR. 2013;148.
  157. 157. Ramakrishna A, Tam HM, Wani SP, Long TD. Effect of mulch on groundnut yield. Field Crops Res. 2006;95:115–25. https://doi.org/10.1016/j.fcr.2005.01.030
  158. 158. Bobojonov I, Lamers JPA, Bekchanov M, Djanibekov N, Franz-Vasdeki J, Ruzimov J, et al. Crop diversification in Uzbekistan. Agroecol Sustain Food Syst. 2013;37:788–811. https://doi.org/10.1080/21683565.2013.775539
  159. 159. Swapna S, Shylaraj KS. Osmotic stress responses in rice varieties. Rice Sci. 2017;24:253–63. https://doi.org/10.1016/j.rsci.2017.04.004
  160. 160. Zhang C, Shi S, Liu Z, Yang F, Yin G. Drought tolerance mechanisms in alfalfa. J Plant Physiol. 2019;232:226–40. https://doi.org/10.1016/j.jplph.2018.10.023
  161. 161. Wang B, Wang G, van Dam J, Yang X, Ritsema C, Siddique KHM, et al. Crop rotation improves soil moisture and yield. Agric Water Manag. 2024;294:108721. https://doi.org/10.1016/j.agwat.2024.108721
  162. 162. Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, et al. Heat stress in cultivated plants. Plant Biosyst. 2021;155:211–34. https://doi.org/10.1080/11263504.2020.1727987
  163. 163. Oyebamiji Y, Adigun B, Aziz N, Asmuni MI, Ahmad Malike F, Lateef A. Advancements in mitigating abiotic stresses in crops. Horticulturae. 2024;10:156. https://doi.org/10.3390/horticulturae10020156
  164. 164. Adhikari L, Baral R, Paudel D, Min D, Makaju SO, Poudel HP, et al. Cold stress tolerance strategies in forage crops. Plant Stress. 2022;4:100081. https://doi.org/10.1016/j.stress.2022.100081
  165. 165. Hussain I, Afzal S, Ashraf M, Rasheed R, Saleem MH, Alatawi A, et al. Effects of metals on wheat growth and remediation. J Plant Growth Regul. 2022;42:2258–82. https://doi.org/10.1007/s00344-022-10700-7
  166. 166. Burges A, Alkorta I, Epelde L, Garbisu C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal-contaminated sites. Int J Phytoremediation. 2018;20(4):384-94. https://doi.org/10.1080/15226514.2017.1365340
  167. 167. Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V. Recent advances in phytoremediation technology. In: Kumar R, Sharma AK, Ahluwalia SS, editors. Advances in environmental biotechnology. Singapore: Springer; 2017. p. 227-41. https://doi.org/10.1007/978-981-10-4041-2_14
  168. 168. Fageria NK, Stone LF, Santos ABD. Breeding for salinity tolerance. In: Fritsche-Neto R, Borém A, editors. Plant breeding for abiotic stress tolerance. Berlin: Springer; 2012. p. 103-22. https://doi.org/10.1007/978-3-642-30553-5_7
  169. 169. Thorve SB, Upadhye SK, Surve SP, Kadam JR. Impact of life-saving irrigation on yield of Rabi sorghum (Sorghum bicolor L.). Int J Agric Sci. 2009;5(1):53-4.
  170. 170. Ramamurthy V, Patil NG, Venugopalan MV, Challa O. Effect of drip irrigation on productivity and water-use efficiency of hybrid cotton (Gossypium hirsutum). Indian J Agric Sci. 2009;79(2):118-21.
  171. 171. Muniyappa M. Influence of depth and interval of drip irrigation on yield, water-use efficiency and economics of chickpea (Cicer arietinum L.). Int J Pure Appl Biosci. 2017;5:771-6. https://doi.org/10.18782/2320-7051.2504
  172. 172. Dring C, Devlin J, Boag G, Sunohara M, Fitzgibbon J, Topp E, et al. Incentives and disincentives influencing adoption of controlled tile drainage in eastern Ontario, Canada. Water Qual Res J Can. 2016;51(1):1-12. https://doi.org/10.2166/wqrjc.2015.047
  173. 173. Choudhury PN, Kumar V. Sensitivity of growth and yield of dwarf wheat to water stress at three growth stages. Irrig Sci. 1980;1(4):223-31. https://doi.org/10.1007/BF00277627
  174. 174. Li SX, Wang ZH, Malhi SS, Li SQ, Gao YJ, Tian XH. Nutrient and water management effects on crop production in dryland China. In: Advances in agronomy. Vol 102. San Diego: Academic Press; 2009. p. 223-65. https://doi.org/10.1016/S0065-2113(09)01007-4
  175. 175. Hussain S, Maqsood M, Lal R, Hussain M, Sarwar A, Bashair M, et al. Integrated nutrient management to alleviate drought stress in hybrid maize. Rom Agric Res. 2017;34:233-42.
  176. 176. Noreen S, Fatima Z, Ahmad S, Athar HR, Ashraf M. Foliar micronutrients in mitigating abiotic stress. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B, editors. Plant nutrients and abiotic stress tolerance. Singapore: Springer; 2018. p. 95-117. https://doi.org/10.1007/978-981-10-9044-8_3
  177. 177. Machado R, Serralheiro R. Salt stress alleviation through fertilization in fruit crops. In: Fruit crops. London: Elsevier; 2020. p. 465-80. https://doi.org/10.1016/B978-0-12-818732-6.00033-2
  178. 178. Zong-An H, Jiang D, Yang Y, Sun JW, Jin SH. Effects of nitrogen deficiency on gas exchange and antioxidant enzymes in rice. Photosynthetica. 2004;42(3):357-64. https://doi.org/10.1023/B:PHOT.0000046153.08935.4c
  179. 179. Peck AW, McDonald GK. Zinc nutrition alleviates heat stress in bread wheat. Plant Soil. 2010;337:355-74. https://doi.org/10.1007/s11104-010-0532-x
  180. 180. Kleinhenz M, Palta J. Root-zone calcium modulates heat stress response in potato. Physiol Plant. 2002;115(1):111-8. https://doi.org/10.1034/j.1399-3054.2002.1150113.x
  181. 181. Jungers J, Kaiser D, Lamb J, Noland R, Samac D, Wells S, et al. Potassium fertilization affects yield and persistence of alfalfa. Agron J. 2019;111(6):2843-52. https://doi.org/10.2134/agronj2019.01.0011
  182. 182. Undersander D, Cosgrove D, Cullen E, Grau C, Rice ME, Renz M, et al. Alfalfa management guide. Madison: Am Soc Agron; 2011. https://doi.org/10.2134/2011.alfalfamanagementguide
  183. 183. Pang J, Ross J, Zhou M, Mendham N, Shabala S. Foliar nutrients alleviate waterlogging stress in barley. Funct Plant Biol. 2007;34(4):221-7. https://doi.org/10.1071/FP06158
  184. 184. Farooq M, Basra S, Rehman H, Saleem B. Seed priming improves chilling tolerance in late-sown wheat (Triticum aestivum L.). J Agron Crop Sci. 2008;194(1):55-60. https://doi.org/10.1111/j.1439-037X.2007.00287.x
  185. 185. Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009;50(7):1260-76. https://doi.org/10.1093/pcp/pcp082
  186. 186. Anderson M, Habiger J. Identification of productivity-associated rhizobacteria in wheat. Appl Environ Microbiol. 2012;78(12):4434-46. https://doi.org/10.1128/AEM.07466-11
  187. 187. Abd El-Daim I, Bejai S, Meijer J. Improved heat stress tolerance in wheat seedlings by bacterial seed treatment. Plant Soil. 2014;379:337-50. https://doi.org/10.1007/s11104-014-2063-3
  188. 188. Ueno D, Rombolà A, Iwashita T, Nomoto K, Ma JF. Novel phytosiderophores secreted by perennial grasses. New Phytol. 2007;174(2):304-10. https://doi.org/10.1111/j.1469-8137.2007.02056.x
  189. 189. Rasheed R, Wahid A, Farooq M, Hussain I, Basra SMA. Proline and glycine betaine improve heat tolerance in sugarcane buds. Plant Growth Regul. 2011;65(1):35-45. https://doi.org/10.1007/s10725-011-9572-3
  190. 190. Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H. Proline induces heat tolerance in chickpea (Cicer arietinum L.). Physiol Mol Biol Plants. 2011;17(3):203-13. https://doi.org/10.1007/s12298-011-0078-2
  191. 191. Wang LJ, Li SH. Thermotolerance induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.). Plant Growth Regul. 2006;48:137-44. https://doi.org/10.1007/s10725-005-6146-2
  192. 192. Kumar S, Sirhindi G, Bhardwaj R, Kumar M, Arora P. Role of 24-epibrassinolide in heat stress tolerance of Brassica juncea L. Plant Stress. 2012;6:55-8.
  193. 193. Sattar A, Cheema M, Farooq M, Wahid M, Wahid A, Babar B. Performance of wheat cultivars under late-sown conditions. Int J Agric Biol. 2010;12(4):561-8.
  194. 194. Wahid A, Shabbir A. Induction of heat tolerance in barley by seed treatment with glycine betaine. Plant Growth Regul. 2005;46:133-41. https://doi.org/10.1007/s10725-005-8379-5
  195. 195. Adedapo A, Jimoh F, Koduru S, Afolayan A, Masika PJ. Antibacterial and antioxidant properties of Calpurnia aurea. BMC Complement Altern Med. 2008;8:53. https://doi.org/10.1186/1472-6882-8-53
  196. 196. Yeh CH, Kaplinsky N, Hu C, Charng Y. Phenotyping to explore thermotolerance diversity. Plant Sci. 2012;195:10-23. https://doi.org/10.1016/j.plantsci.2012.06.004
  197. 197. Sharma J, Kumar N, Singh N, Santal A. Phytoremediation technologies for heavy-metal removal. Front Plant Sci. 2023;14:1076876. https://doi.org/10.3389/fpls.2023.1076876
  198. 198. Wani OA, et al. Biochar as a tool to mitigate abiotic stress. In: Bahar FA, Bhat MA, Mahdi SS, editors. Secondary agriculture. Cham: Springer; 2022. p. 97-108. https://doi.org/10.1007/978-3-031-09218-3_9
  199. 199. Tang H, Wang S, Liu Y, Hassan MU, Song Y, Huang G, et al. Biochar mitigates heavy-metal toxicity in plants. Not Bot Horti Agrobo. 2022;50(3):12778. https://doi.org/10.15835/nbha50312778
  200. 200. Huang M, Yin X, Chen J, Cao F. Biochar mitigates heat stress in rice (Oryza sativa L.). Front Plant Sci. 2021;12:711725. https://doi.org/10.3389/fpls.2021.711725
  201. 201. Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. Role of biochar in mitigating drought and salinity stress. Front Plant Sci. 2023;14:1163451. https://doi.org/10.3389/fpls.2023.1163451
  202. 202. Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, et al. Biochar mitigates salinity stress in wheat (Triticum aestivum L.). J Plant Nutr. 2018;41(4):526-38. https://doi.org/10.1080/01904167.2017.1392568
  203. 203. Yuan J, Meng J, Liang X, Yang X, Chen W. Biochar leachates improve cold tolerance in rice seedlings. Front Plant Sci. 2017;8:1624. https://doi.org/10.3389/fpls.2017.01624
  204. 204. Mahmoudian M, Rahemi M, Karimi S, Yazdani N, Tajdini Z, Sarikhani S, et al. Kaolin improves drought tolerance in Persian walnut. J Saudi Soc Agric Sci. 2021;20(6):409-16. https://doi.org/10.1016/j.jssas.2021.05.002
  205. 205. Mnyika A, Mbuvi S, Gogo E. Superabsorbent polymer and rabbit manure improve eggplant growth (Solanum melongena L.). NASS J Agric Sci. 2020;2(1):13-20.
  206. 206. Ostrand MS, DeSutter TM, Daigh ALM, Limb RF, Steele DD. Superabsorbent polymers: properties and applications. Agrosyst Geosci Environ. 2020;3(1):e20074. https://doi.org/10.1002/agg2.20074
  207. 207. Goyal V, Kumari A, Avtar R, Baliyan V, Mehrotra S. Orthosilicic acid and seaweed extract alleviate heat stress in Brassica juncea. Silicon. 2023;15(11):4909-19. https://doi.org/10.1007/s12633-023-02376-9
  208. 208. Hussein MH, Eltanahy E, Al Bakry AF, Elsafty N, Elshamy MM. Seaweed extracts alleviate salinity stress in Vigna sinensis and Zea mays. J Appl Phycol. 2021;33(2):1273-91. https://doi.org/10.1007/s10811-020-02330-x
  209. 209. Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B. Seaweed extract improves drought tolerance in soybean. AoB Plants. 2018;10(1):plx051. https://doi.org/10.1093/aobpla/plx051
  210. 210. El Boukhari MEM, Barakate M, Drissi B, Bouhia Y, Lyamlouli K. Seaweed biostimulants mitigate drought stress in faba bean (Vicia faba L.). J Plant Growth Regul. 2023;42(9):5642-52. https://doi.org/10.1007/s00344-023-10945-w
  211. 211. Anjos Neto AP, Oliveira GRF, Mello SCDC, Silva MSD, Gomes-Junior FG, Novembre ADLC, et al. Seaweed extract seed priming mitigates heat stress in spinach. Bragantia. 2020;79(4):502-11. https://doi.org/10.1590/1678-4499.20200127
  212. 212. Babaousmail M, Nili MS, Brik R, Saadouni M, Yousif SKM, Omer RM, et al. Improving salinity tolerance in lettuce (Lactuca sativa L.). Life. 2022;12(10):1538. https://doi.org/10.3390/life12101538
  213. 213. Yousef EAA, Ali MAM. Yeast extract and glycine betaine alleviate cold stress in tomato. Egypt J Hortic. 2019;46(1):117-31. https://doi.org/10.21608/ejoh.2019.8020.1096
  214. 214. Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. Drought stress impacts and mitigation strategies. Plants. 2021;10(2):259. https://doi.org/10.3390/plants10020259
  215. 215. Iqbal S, Waheed Z, Naseem A. Nanotechnology and abiotic stresses. In: Javad S, editor. Nanoagronomy. Cham: Springer; 2020. p. 37-52. https://doi.org/10.1007/978-3-030-41275-3_3
  216. 216. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, et al. Nanoparticles enhance crop tolerance to abiotic stress. Front Plant Sci. 2022;13:946717. https://doi.org/10.3389/fpls.2022.946717
  217. 217. Sadak MS, Dawood MG. Biofertilizers alleviate salinity stress in wheat. Gesunde Pflanzen. 2023;75(4):1207-19. https://doi.org/10.1007/s10343-022-00783-3

Downloads

Download data is not yet available.