Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Potential of natural dyes from non-traditional flowers for textile application– A comprehensive review

DOI
https://doi.org/10.14719/pst.11041
Submitted
1 August 2025
Published
15-01-2026

Abstract

Environmental degradation caused by textile industry effluents drastically damages aquatic ecosystems and groundwater tables by increasing biological oxygen demand (BOD) and chemical oxygen demand (COD). The synthetic dyes used in textiles are carcinogenic and mutagenic in nature and pose several risks to human health. This review discusses the use of natural dyes from non-traditional flowers as alternatives to synthetic textiles dyes. Non-traditional flowers are underutilized species that are not widely cultivated and their use has not been fully explored. Since flowers are diverse in color, they can be utilized for dye extraction to produce various shades. The literature review provides a list of non-traditional flowers that can be used as textile dyes along with advanced extraction methods. Proper characterization and toxicity analysis are essential for natural dyes after extraction, prior to their application in textiles to confirm the absence of heavy metals. The application part addresses advanced substrate pretreatment and the use of mordants to fix the natural colours to the fabric. The use of bio-mordants is an emerging technique in terms of the environment, which is related to floral dyes. Advanced dyeing methods and characterization of dyed fabrics are essential for commercial use. Challenges involved in various processes associated with natural dyes in textiles are listed and need to be addressed by further research in the future.

References

  1. 1. Yusuf M, Shabbir M, Mohammad F. Natural colorants: Historical, processing and sustainable prospects. Nat Prod Bioprospect. 2017;7:123–45. https://doi.org/10.1007/s13659-017-0119-9
  2. 2. Hagan E, Poulin J. Statistics of the early synthetic dye industry. Herit Sci. 2021;9(1):33. https://doi.org/10.1186/s40494-021-00493-5
  3. 3. Mittal J. Permissible synthetic food dyes in India. Resonance. 2020;25(4):567–77. https://doi.org/10.1007/s12045-020-0970-6
  4. 4. Kumar J, Sinha AK. Resurgence of natural colourants: A holistic view. Nat Prod Res. 2004;18(1):59–84. https://doi.org/10.1080/1057563031000122112
  5. 5. Ghurde MU, Padwad M, Deshmukh V, Malode S. Extraction of natural dye from Ixora coccinea (Linn.) flowers for cotton fabric colouration. Int J Sci Res. 2016;5(1):1272–76. https://doi.org/10.21275/v5i1.NOV153003
  6. 6. Adeel S, Rehman F-U, Rafi S, Zia KM, Zuber M. Environmentally friendly plant-based natural dyes: extraction methodology and applications. Plant Hum Health. 2019;2:383–415. https://doi.org/10.1007/978-3-030-03344-6_17
  7. 7. Thant TZ. Extraction and application of natural dye from the petals of red rose (Rosa centifolia) on cotton yarns. MERAL Portal. 2019.
  8. 8. Datta DB, Das D, Sarkar B, Majumdar A. Lantana camara flowers as a natural dye source for cotton fabrics. J Nat Fibers. 2023;20(1):2159604. https://doi.org/10.1080/15440478.2022.2159604
  9. 9. Samanta AK, Agarwal P. Application of natural dyes on textiles. Indian J Fibre Text Res. 2009;34(4):384–99.
  10. 10. Sarkar D, Mazumdar K, Datta S, Sinha D. Application of natural dyes from marigold flowers on cotton, silk and wool. J Text Assoc. 2005;66(2):67–72.
  11. 11. Arunkumar P, Yogamoorthi A. Isolation, application and biochemical characterization of colour component from Tecoma stans. Int J Nat Prod Res. 2014;4(1):9–13.
  12. 12. Lavanya V, Thamaraiselvi S. Gomphrena globosa: the potential natural food grade betacyanin. Academicia. 2021;11(10):1882–94.
  13. 13. Sanku LP, Padma A, Lakshmi VV, Hayavadana J, Rajitha I. Exploring dye extraction methods and preservatives for natural dyes. J Pharmacogn Phytochem. 2021;10(1):137–42.
  14. 14. Mohanty BC, Chandramouli K, Naik H. Natural dyeing processes of India. 1987.
  15. 15. Jayakumar J, Sudha P, Rajkumar P, Pandiselvam R, Gurusamy K, Kumaran K, et al. Comparative study on solvent effect on bixin extraction. Biomass Conv Bioref. 2023;1–12. https://doi.org/10.1007/s13399-023-04071-6
  16. 16. Samanta AK, Konar A. Dyeing of textiles with natural dyes. Nat Dyes. 2011;3:212–22.
  17. 17. Samanta A, Agarwal P. Application of natural dyes on textiles. Indian J Fibre Text Res. 2009;34:384–99.
  18. 18. Santos J, Escobar-Avello D, Magalhães P, Magalhães FD, Martins JM, González-Álvarez J, et al. High-value compounds from grape canes. Food Bioprod Process. 2022;133:153–67. https://doi.org/10.1016/j.fbp.2022.04.003
  19. 19. Sri Raghavi R, Visalakshi M, Karthikeyan S, Amutha Selvi G, Thamaraiselvi SP, Gurusamy K. Standardisation of anthocyanin extraction from hibiscus petals. J Pharm Innov. 2022;11:303–9. https://doi.org/10.22271/tpi.2022.v11.i8d.14647
  20. 20. Vardanega R, Santos DT, Meireles MA. Intensification of bioactive compound extraction. Pharmacogn Rev. 2014;8(16):88–95. https://doi.org/10.4103/0973-7847.134231
  21. 21. Paraíso CM, Dos Santos SS, Correa VG, Magon T, Peralta RM, Visentainer JV, et al. Ultrasound assisted extraction of hibiscus bioactives. J Food Sci Technol. 2019;56(10):4667–77. https://doi.org/10.1007/s13197-019-03919-y
  22. 22. Liu J, Li J-W, Tang J. Ultrasonic extraction of carbohydrates from Stevia. Food Bioprod Process. 2010;88:215–21. https://doi.org/10.1016/j.fbp.2009.12.005
  23. 23. Sun X, Ohanenye IC, Ahmed T, Udenigwe CC. Microwave treatment effect on pigeon pea. Food Chem. 2020;329:127196. https://doi.org/10.1016/j.foodchem.2020.127196
  24. 24. Chan C-H, Lim J-J, Yusoff R, Ngoh G-C. Kinetic model for microwave-assisted extraction. Sep Purif Technol. 2015;143:152–60. https://doi.org/10.1016/j.seppur.2015.01.041
  25. 25. Osorio-Tobón JF, Meireles MAA. Recent applications of pressurised fluid extraction- Curcuminoids Extraction with Pressurized Liquids Food Public Health. 2013;3(6):289-303.
  26. 26. Izirwan I, Munusamy T, Hamidi N, Sulaiman S. Microwave-assisted extraction of anthocyanin. Int J Mech Eng Robot Res. 2020;9(9):1246–52. https://doi.org/10.18178/ijmerr.9.9.1246-1252
  27. 27. Gomez S, Pathrose B, Kuruvila B. Anthocyanin yield from butterfly pea. Future Foods. 2022;6:100199. https://doi.org/10.1016/j.fufo.2022.100199
  28. 28. Lasunon C, Ponpesh P, Satirapipathkul C. Pigment extraction using microwave. Int J Sci Eng Manag. 2018;3(5):37–9.
  29. 29. Benito-Román O, Rodríguez-Perrino M, Sanz MT, Melgosa R, Beltrán S. Supercritical CO₂ extraction of quinoa oil. J Supercrit Fluids. 2018;139:62–71. https://doi.org/10.1016/j.supflu.2018.05.009
  30. 30. Vankar PS, Tiwari V, Ghorpade B. Supercritical extraction of natural dye from eucalyptus bark. Proc 2nd Conv Nat Dyes. 2002;53–55.
  31. 31. Jerković I, Molnar M, Vidović S, Vladić J; Jokić S. Supercritical CO₂ extraction of Lavandula. Phytochem Anal. 2017;28(6):558–66. https://doi.org/10.1002/pca.2705
  32. 32. Dhouibi N, Baaka N, Charradi R, Bouine I, Dhaouadi H, Dridi-Dhaouadi S. Multi-fiber dyeing using supercritical extracts. Fibers Polym. 2021;22(7):1874–82. https://doi.org/10.1007/s12221-021-0422-2
  33. 33. Chetia P, Priyadharshini P, Manimegalai S, Rajasugunasekar D, Sudhakar P, Anitha R. Phytochemical analysis of mulberry leaves. Pharma Innov. 2023;12(8):1500–4. https://doi.org/10.22271/tpi.2023.v12.i8r.22228
  34. 34. Jha PK, Pandey O, Singh K. FTIR spectral analysis of phosphate glass–ceramics. J Mol Struct. 2015;1083:278–85. https://doi.org/10.1016/j.molstruc.2014.11.027
  35. 35. Mishra PK, Singh P, Gupta KK, Tiwari H, Srivastava P. Ultrasound extraction of dahlia dye. Indian J Fibre Text Res. 2012;37:83–6.
  36. 36. Konappa N, Udayashankar AC, Krishnamurthy S, Jogaiah S. GC–MS analysis of phytoconstituents. Sci Rep. 2020;10(1):16438. https://doi.org/10.1038/s41598-020-73442-0
  37. 37. Devanand P, Sivakumar B, Sivakumar K, Ramesh M, Rajendran R. Chemical characterization of Spathodea campanulata. Int J Adv Biochem Res. 2023;8(8):750-55. https://doi.org/10.33545/26174693.2024.v8.i8Sk.1921
  38. 38. Singh A, Mittal A, Jangid NK. Toxicology of dyes. In: Impact of Textile Dyes. IGI Global; 2020. p. 50–69. https://doi.org/10.4018/978-1-7998-0311-9.ch003
  39. 39. Zippel E. Analysis of textile colorants. Rev Prog Color. 2004;34:1–11. https://doi.org/10.1111/j.1478-4408.2004.tb00148.x
  40. 40. Saxena S, Raja ASM. Natural dyes: sources and sustainability. In: Muthu SS, editor. Roadmap to sustainable textiles and clothing. Textile science and clothing technology. Singapore: Springer; 2014. p. 37–80. https://doi.org/10.1007/978-981-287-065-0_2
  41. 41. Vankar PS. Natural dyes for textiles. Woodhead Publishing; 2017. https://doi.org/10.1016/B978-0-08-101274-1.00001-X
  42. 42. Singh M, Vajpayee M, Ledwani L. Eco-friendly dyeing: A review. Mater Today Proc. 2021;43:2868–71. https://doi.org/10.1016/j.matpr.2021.01.078
  43. 43. Madhu A, Chakraborty JN. Enzymes in textile processing. J Clean Prod. 2017;145:114–33. https://doi.org/10.1016/j.jclepro.2017.01.013
  44. 44. Durán N, Durán M. Enzyme applications in textiles. Color Technol. 2008;30:41–4. https://doi.org/10.1111/j.1478-4408.2000.tb03779.x
  45. 45. Kumar D, Bhardwaj R, Jassal S, Kumar V, Kumar A, Singh D. Enzymes for eco-friendly textile processing. Environ Sci Pollut Res. 2021;30:71838–48. https://doi.org/10.1007/s11356-021-16764-4
  46. 46. Samant L, Jose S, Rose NM, Shakyawar DB. Antimicrobial cotton using natural dyes. J Nat Fibers. 2020;19:2243–53. https://doi.org/10.1080/15440478.2020.1807443
  47. 47. Pizzicato B, Pacifico S, Cayuela D, Mijas G, Riba-Moliner M. Sustainable natural dyes: review. Molecules. 2023;28(16):5954. https://doi.org/10.3390/molecules28165954
  48. 48. Mohammad F. Radiation-induced sustainable coloration. Ind Eng Chem Res. 2015;54(15):3727–45. https://doi.org/10.1021/acs.iecr.5b00524
  49. 49. Ferrero F, Migliavacca G, Periolatto M. UV treatments on cotton fibers. Cotton Res. 2016:235–56. https://doi.org/10.5772/63796
  50. 50. Rehman F-U, Adeel S, Hanif R, et al. UV-modulated marigold dyeing. J Nat Fibers. 2017;14:63–70. https://doi.org/10.1080/15440478.2016.1146642
  51. 51. Gulzar T, Adeel S, Hanif I, Rehman F-U, Hanif R, Zuber MA, et al. Eco-friendly dyeing of gamma ray-induced cotton using natural quercetin extracted from Acacia bark (A. nilotica). J Nat Fibers. 2015;12:494–504. https://doi.org/10.1080/15440478.2014.964445
  52. 52. Chirila L, Popescu A, Cutrubinis M, Stanculescu I, Moise VI. Influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics. Radiat Phys Chem. 2018;145:97–103. https://doi.org/10.1016/j.radphyschem.2017.12.017
  53. 53. Shahid-ul-Islam, Mohammad F. High-energy radiation-induced sustainable coloration and functional finishing of textile materials. Ind Eng Chem Res. 2015;54:3727–45. https://doi.org/10.1021/acs.iecr.5b00524
  54. 54. Haji A. Dyeing of cotton fabric with natural dyes improved by mordants and plasma treatment. Prog Color Color Coat. 2019;12(3):191–201.
  55. 55. İşmal ÖE, Yıldırım L. Metal mordants and biomordants. In: Impact and Prospects of Green Chemistry for Textile Technology. Woodhead Publishing; 2019. p. 57–82. https://doi.org/10.1016/B978-0-08-102491-1.00003-4
  56. 56. Boutrup J, Ellis C. The Art and Science of Natural Dyes: Principles, Experiments and Results. Schiffer Publishing. 2018.
  57. 57. Rahman NAA, Tajuddin R, Tumin SM. Optimization of natural dyeing using ultrasonic method and biomordant. Int J Chem Eng Appl. 2013:161–4. https://doi.org/10.7763/IJCEA.2013.V4.285
  58. 58. Guesmi A, Hamadi NB, Ladhari N, Sakli F. Dyeing properties and colour fastness of wool dyed with indicaxanthin natural dye. Ind Crops Prod. 2012;37:493–99. https://doi.org/10.1016/j.indcrop.2011.07.026
  59. 59. Grover N, Patni V. Extraction and application of natural dye preparations from the floral parts of Woodfordia fruticosa (Linn.) Kurz. Indian J Natural Prod Resour. 2011;2:403-8.
  60. 60. Nambela L, Haule LV. Extraction of natural dyes from Delonix regia flowers for cotton fibres. Tanzan J Sci. 2024;50(1):126–33. https://doi.org/10.4314/tjs.v50i1.10
  61. 61. Barwant M, Karande V, Singh M, Tripathi S, Singh V, Srivastava D. Innovative Trends in Biological Science. Bluerose Publishers; Noida. 2023.
  62. 62. Shahmoradi Ghaheh F, Moghaddam MK, Tehrani M. Effect of metal mordants and biomordants on colorimetric and antibacterial properties of natural dyes on cotton fabric. Color Technol. 2021;137(6):689–98. https://doi.org/10.1111/cote.12569
  63. 63. Mijas G, Josa M, Cayuela D, Riba-Moliner M. Study of dyeing process of hemp/cotton fabrics using natural dyes from Rubia tinctorum L. and Calendula officinalis. Polymers. 2022;14(21):4508. https://doi.org/10.3390/polym14214508
  64. 64. Chungkrang L, Bhuyan SS, Phukan AR. Natural dyes: extraction and applications. Int J Curr Microbiol Appl Sci. 2021;10:1669–77. https://doi.org/10.20546/ijcmas.2021.1001.195
  65. 65. Swamy VN, Gowda KN, Sudhakar R. Extraction and dyeing conditions of natural dye from Plumeria rubra L. Indian J Tradit Knowl. 2016;15(2):278–84.
  66. 66. Ahmed NSE, El-Shishtawy RM. Use of new technologies in coloration of textile fibers. J Mater Sci. 2010;45:1143–53. https://doi.org/10.1007/s10853-009-4111-6
  67. 67. Kanchana R, Fernandes A, Bhat B, Budkule S, Dessai S, Mohan R. Dyeing of textiles with natural dyes-an eco-friendly approach. Int J Chem Tech Res. 2013;5(5):2102–9.
  68. 68. Arun K, Yogamoorthi A. Isolation, application and biochemical characterization of colour component from Tecoma stans. Int J Nat Prod Res. 2014;4(1):9–11.
  69. 69. Yadav S, Tiwari KS, Gupta C, Tiwari MK, Khan A, Sonkar SP. Review on natural dyes and pigments. Results Chem. 2023;5:100733. https://doi.org/10.1016/j.rechem.2022.100733
  70. 70. Vankar PS, Shanker R, Srivastava J. Ultrasonic dyeing of cotton fabric with aqueous extract of Eclipta alba. Dyes Pigments. 2007;72(1):33–7. https://doi.org/10.1016/j.dyepig.2005.07.013
  71. 71. Ali N, Abd-Elsalam I. Sustainable application of natural dye from clitoral plant for textile fibers and its microbial effect to overcome environmental pollution. Int J Agric Technol. 2024;20(2):493-500.
  72. 72. Van der Kraan M, Vanesa Fernandez Cid M, Woerlee GF, Veugelers WJ, Witkamp G-J. Equilibrium study on disperse dyeing of polyester in supercritical carbon dioxide. Text Res J. 2007;77(8):550–58. https://doi.org/10.1177/0040517507077483
  73. 73. Meksi N, Moussa A. Progress in ecological application of ionic liquids in textile processes. J Clean Prod. 2017;161:105–26. https://doi.org/10.1016/j.jclepro.2017.05.066
  74. 74. Fang K, Wang C, Zhang X, Xu Y. Dyeing of cationised cotton using nanoscale pigment dispersions. Color Technol. 2005;121(6):325–28. https://doi.org/10.1111/j.1478-4408.2005.tb00377.x
  75. 75. Saeed A, Hassan K, Sadaf SS. Review on colour fastness of natural dyed textiles. Pak J Sci Ind Res A Phys Sci. 2023;66(2):201–12.
  76. 76. Kombey P, Rai K, Chaudhary V. Natural dyes from flower crops: A review. Eur Chem Bull. 2023;12:5110–33.
  77. 77. Sk S, Mia R, Haque MA, Shamim AM. Review on extraction and application of natural dyes. Text Leather Rev. 2021;4(4):218–33.
  78. 78. Pattanaik L, Padhi SK, Hariprasad P, Naik SN. Life cycle cost analysis of natural indigo dye production. Clean Technol Environ Policy. 2020;22(8):1639–54. https://doi.org/10.1007/s10098-020-01914-y
  79. 79. Mijas G, Josa M, Cayuela D, Riba-Moliner M. Study of dyeing process of hemp/cotton fabrics using natural dyes. Polymers. 2022;14(21):4508. https://doi.org/10.3390/polym14214508
  80. 80. Devanand PS, Raja N, Utharasu S, Kumar P, Kiruba M, Radha P, et al. Chemical characterization of Spathodea campanulata for natural dye. Int J Adv Biochem Res. 2024;SP-8(8):750–55.
  81. 81. Baishya D, Talukdar J, Sandhya S. Cotton dyeing with natural dye from bottlebrush flowers. Univ J Environ Res Technol. 2012;2(5):377-82.
  82. 82. Adeel S, Ahmad S, Habib N, Mia R, Ahmed B. Coloring efficacy of Nyctanthes arbortristis natural dye. Ind Crops Prod. 2022;188:115571. https://doi.org/10.1016/j.indcrop.2022.115571
  83. 83. Daberao A, Kolte P, Turukmane R. Cotton dyeing with natural dye. Int J Res Sci Innov. 2016;3(8):705–12.
  84. 84. Kumaresan M. Fastness properties of silk with eco-friendly natural dyes. J Environ Nanotechnol. 2014;3(2):194–9. https://doi.org/10.13074/jent.2014.03.143084
  85. 85. Grover N. Extraction and application of natural dye preparations from Woodfordia fruticosa. Indian J Nat Prod Resour. 2011;2:403-08.
  86. 86. Mukherjee S, Kanakarajan S. Extraction and dyeing of silk yarn using Cosmos sp. Int J Dev Res. 2017;7(7):13865–71.
  87. 87. Velvizhi, Porkodi, Muruganathan. Extraction and purification of natural dye from Bougainvillea glabra for cotton fabrics. J Infom Comput Sci. 2020;1(1):1024-38.
  88. 88. Rane N, Patil K. Infrared spectroscopic characterization of dye from Magnolia champaka. Univ J Environ Res Technol. 2016;6(3):134-39.
  89. 89. Nair A, Kelkar A, Kshirsagar S, Harekar A, Satardekar K, Barve S, et al. Natural dye from Aster chinensis as pH indicator. J Innovations Pharm Biol Sci. 2018;5(4):1–4.
  90. 90. Barahapurkar S, Purwar R, Baldua RK. Banana pseudostem sap as biomordant for silk dyeing. Fibers Polym. 2020;21:2010–7. https://doi.org/10.1007/s12221-020-9045-2
  91. 91. Roriz CL, Heleno SA, Carocho M, Rodrigues P, Pinela J, Dias MI, et al. Betacyanins from Gomphrena globosa used as food colourants. Food Chem. 2020;329:127178. https://doi.org/10.1016/j.foodchem.2020.127178
  92. 92. Khaing AM, Win KN, Maung YM, Win TT. Optical properties of natural dyes. J Myanmar Acad Arts Sci. 2019;17:174–85.
  93. 93. Anantha Rajeswari K, Giri DRS. Extraction of natural dye from Nerium oleander. World J Sci Res. 2020;5(1):1–9.
  94. 94. Patel R. Extraction of natural dye from Antirrhinum majus [Doctoral dissertation]. Parul University; 2019.
  95. 95. Manicketh TJ, Francis MS, Joseph G. Polygenetic natural dyes from Cordyline fruticosa and Mussaenda erythrophylla. Nat Prod Res. 2022;36(15):4040–44. https://doi.org/10.1080/14786419.2021.1903893
  96. 96. Singh S, Maurya IC, Sharma S, Kushwaha SPS, Srivastava P, Bahadur L. Natural dyes as photosensitizer in DSSCs. Optik. 2021;243:167331. https://doi.org/10.1016/j.ijleo.2021.167331
  97. 97. Rupali D, Alka C. Natural colorant for silk fiber: Plumeria rubra. Int J Life Sci. 2014;(A2):166–8.
  98. 98. Pal A, Kumar R, Upadhyay L, Tripathi Y. Antifungal activity of natural dye from Barleria prionitis. Iran J Chem Chem Eng. 2018;37(1):213-21.
  99. 99. Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D, Prasanna S, Walke P, et al. Anthocyanin extraction for DSSC applications. J Mater Sci Mater Electron. 2017;28:9882–92. https://doi.org/10.1007/s10854-017-6743-7
  100. 100. Topič T, Gorjanc M, Kert M. Treatment process influence on cotton dyeability using goldenrod dye. Tekstilec. 2018;61(3):192-200. https://doi.org/10.14502/Tekstilec2018.61.192-200

Downloads

Download data is not yet available.