Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Speed breeding: A technique for early development of plant varieties with high productive capacity and resilience

DOI
https://doi.org/10.14719/pst.11174
Submitted
7 August 2025
Published
08-12-2025

Abstract

Speed breeding (SB) has emerged as a technology that helps in developing new, improved crop varieties by dramatically shortening the time period taken for their generation. This is achieved by optimizing environmental parameters such as photoperiod, temperature and soil moisture. This process enables the development of multiple generations per year, thereby speeding up the development of homozygous lines and elite cultivars. Integration with modern molecular tools, including marker-assisted selection (MAS) and genomic selection (GS) with SB, enhances the precision and efficiency of trait selection, leading to faster genetic gain. Despite these advantages, adoption of this technique faces challenges such as infrastructure demands, shortage of skilled personnel, energy requirements and regional disparities in technology access. Addressing these bottlenecks through targeted investment, capacity building and policy support is required to harness SB technique for global food security. This review elucidates the principles, applications and limitations of SB and highlights its pivotal role in modern plant breeding and sustainable agriculture.

References

  1. 1. Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013;5(3):291–317. https://doi.org/10.1007/s12571-013-0263-y
  2. 2. Von Braun J. The world food situation: An overview. Citeseer. 2005. https://hdl.handle.net/10568/160717
  3. 3. Ristaino JB. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect. 2002;4(13):1369–77. https://doi.org/10.1016/S1286-4579(02)00010-2
  4. 4. Varshney RK, Hoisington DA, Tyagi AK. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 2006;24(11):490–99. https://doi.org/10.1016/j.tibtech.2006.08.006
  5. 5. Li H, Rasheed A, Hickey LT, He Z. Fast-forwarding genetic gain. Trends Plant Sci. 2018;23(3):184–86. https://doi.org/10.1016/j.tplants.2018.01.007
  6. 6. Wanga MA, Shimelis H, Mashilo J, Laing MD. Opportunities and challenges of speed breeding: A review. Plant Breed. 2021;140(2):185–94. https://doi.org/10.1111/pbr.12909
  7. 7. Azmat H. Scientists turn to speed breeding to develop resilient, high yield crops. 2025. https://doi.org/10.1111/pbr.13258
  8. 8. Sharma A, Pandey H, Misra V, Devadas VS, Kesavan AK, Heisnam P, et al. Harnessing speed breeding in controlled environment ecosystem for millets sustainability. Plant Breed. 2024. https://doi.org/10.1111/pbr.13258
  9. 9. Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, et al. Speed breeding for multiple disease resistance in barley. Euphytica. 2017;213(3):1–14. https://doi.org/10.1007/s10681-016-1803-2
  10. 10. Broich SL, Palmer RG. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica. 1980;29(1):23–32. https://doi.org/10.1007/BF00037246
  11. 11. Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U. Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed. 2017;37(3):1–8. https://doi.org/10.1007/s11032-017-0628-6
  12. 12. Budak H, Kantar M, Yucebilgili Kurtoglu K. Drought tolerance in modern and wild wheat. Sci World J. 2013. https://doi.org/10.1155/2013/548246
  13. 13. Heffner EL, Sorrells ME, Jannink J. Genomic selection for crop improvement. Crop Sci. 2009;49(1):1–12. https://doi.org/10.2135/cropsci2008.08.0512
  14. 14. Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, et al. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 (Bethesda). 2013;3(11):1903–26. https://doi.org/10.1534/g3.113.008227
  15. 15. Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944–63. https://doi.org/10.1038/s41596-018-0072-z
  16. 16. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat plants. 2018;4(1):23–9. https://doi.org/10.1038/s41477-017-0083-8
  17. 17. Richard CAI, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT. High-throughput phenotyping of seminal root traits in wheat. Plant Methods. 2015;11(1):1–11. https://doi.org/10.1186/s13007-015-0055-9
  18. 18. Vince-Prue D. The duration of light and photoperiodic responses. In: Photomorphogenesis in plants. Springer. 1994. p. 447–90. https://doi.org/10.1007/978-94-011-1884-2_17
  19. 19. Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, et al. A new resistance gene against potato late blight originating from Solanum pinnatisectum located on potato chromosome 7. Front Plant Sci. 2017;8:1729. https://doi.org/10.3389/fpls.2017.01729
  20. 20. O’Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci. 2013;40(2):107–14. https://doi.org/10.3146/PS12-12.1
  21. 21. Bhatta M, Sandro P, Smith MR, Delaney O, Voss-Fels KP, Gutierrez L, et al. Need for speed: manipulating plant growth to accelerate breeding cycles. Curr Opin Plant Biol. 2021;60:101986. https://doi.org/10.1016/j.pbi.2020.101986
  22. 22. Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol. 2006;60(4):469–80. https://doi.org/10.1007/s11103-005-4814-2
  23. 23. Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica. 2013;191(2):311–16. https://doi.org/10.1007/s10681-013-0909-z
  24. 24. Samineni S, Sen M, Sajja SB, Gaur PM. Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J. 2020;8(1):164–69. https://doi.org/10.1016/j.cj.2019.08.003
  25. 25. Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci. 2016;7:816. https://doi.org/10.3389/fpls.2016.00816
  26. 26. Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather Clim Extrem. 2015;10:4–10. https://doi.org/10.1016/j.wace.2015.08.001
  27. 27. McClung CR, Lou P, Hermand V, Kim JA. The importance of ambient temperature to growth and the induction of flowering. Front Plant Sci. 2016;7:1266. https://doi.org/10.3389/fpls.2016.01266
  28. 28. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303(5664):1640–44. https://doi.org/10.1126/science.1094305
  29. 29. Singh V, Nguyen CT, van Oosterom EJ, Chapman SC, Jordan DR, Hammer GL. Sorghum genotypes differ in high temperature responses for seed set. F Crop Res. 2015;171:32–40. https://doi.org/10.1016/j.fcr.2014.11.003
  30. 30. Wiebbecke CE, Graham MA, Cianzio SR, Palmer RG. Day temperature influences the male-sterile locus ms9 in soybean. Crop Sci. 2012;52(4):1503–10. https://doi.org/10.2135/cropsci2011.08.0410
  31. 31. Yang S, Weers BD, Morishige DT, Mullet JE. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol. 2014;14(1):1–15. https://doi.org/10.2135/cropsci2011.08.0410
  32. 32. Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, et al. Growth and development responses of crop plants under drought stress: a review. Zemdirbyste. 2017;104(3):267–76. https://doi.org/10.2135/cropsci2011.08.0410
  33. 33. Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, et al. Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci. 2018;9:393. https://doi.org/10.3389/fpls.2018.00393
  34. 34. Kumar V. Speed Breeding: Accelerated Plant Breeding. J Agric Res Technol. 2022;47:36–9.
  35. 35. Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, et al. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci. 2017;8:1950. https://doi.org/10.3389/fpls.2017.01950
  36. 36. Vadez V, Hash T, Bidinger FR, Kholova J. Phenotyping pearl millet for adaptation to drought. Front Physiol. 2012;3:386. https://doi.org/10.3389/fphys.2012.00386
  37. 37. De Rouw A, Winkel T. Drought avoidance by asynchronous flowering in pearl millet stands cultivated on-farm and on-station in Niger. Exp Agric. 1998;34(1):19–39. https://doi.org/10.1017/S0014479798001057
  38. 38. Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica. 2009;167(3):353–70. https://doi.org/10.1007/s10681-009-9893-8
  39. 39. Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, et al. Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci. 2017;8:586. https://doi.org/10.3389/fpls.2017.00586
  40. 40. Munamava M, Riddoch I. Response of three sorghum (Sorghum bicolor L. Moench) varieties to soil moisture stress at different developmental stages. S Afr J Plant Soil. 2001;18(2):75–9. https://doi.org/10.1080/02571862.2001.10634407
  41. 41. Warnasooriya SN, Brutnell TP. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. J Exp Bot. 2014;65(11):2825–34. https://doi.org/10.1093/jxb/eru221
  42. 42. Rahman MA, Quddus MR, Jahan N, Rahman MA, Sarker MRA, Hossain H, et al. Field rapid generation advance: An effective technique for industrial scale rice breeding program. Exp. 2019;47(2):2659–70. https://doi.org/10.1626/pps.14.56
  43. 43. Fukushima A, Shiratsuchi H, Yamaguchi H, Fukuda A. Effects of nitrogen application and planting density on morphological traits, dry matter production and yield of large grain type rice variety Bekoaoba and strategies for super high-yielding rice in the Tohoku region of Japan. Plant Prod Sci. 2011;14(1):56–63. https://doi.org/10.1626/pps.14.56
  44. 44. Hayashi S, Kamoshita A, Yamagishi J. Effect of planting density on grain yield and water productivity of rice (Oryza sativa L.) grown in flooded and non-flooded fields in Japan. Plant Prod Sci. 2006;9(3):298–311. https://doi.org/10.1626/pps.9.298
  45. 45. Jones OR, Johnson GL. Row width and plant density effects on Texas High Plains sorghum. J Prod Agric. 1991;4(4):613–21. https://doi.org/10.2134/jpa1991.0613
  46. 46. Khan A, Najeeb U, Wang L, Tan DKY, Yang G, Munsif F, et al. Planting density and sowing date strongly influence growth and lint yield of cotton crops. F Crop Res. 2017;209:129–35. https://doi.org/10.1016/j.fcr.2017.04.019
  47. 47. Khan N, Han Y, Xing F, Feng L, Wang Z, Wang G, et al. Plant density influences reproductive growth, lint yield and boll spatial distribution of cotton. Agronomy. 2019;10(1):14. https://doi.org/10.3390/agronomy10010014
  48. 48. Raju CSN, Sagar CK. Speed breeding in agriculture future prospects. Int J Curr Microbiol Appl Sci. 2020;9(12):1059–76. https://doi.org/10.20546/ijcmas.2020.912.128
  49. 49. Zhang Y, Wang J, Du J, Zhao Y, Lu X, Wen W, et al. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnol J. 2021;19(1):35–50. https://doi.org/10.1111/pbi.13437
  50. 50. Zhang Y, Xu Z, Li J, Wang R. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Front Plant Sci. 2021;12:752606. https://doi.org/10.3389/fpls.2021.752606
  51. 51. Jagadish SVK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PVV, Craufurd PQ. Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci. 2016;7:913. https://doi.org/10.3389/fpls.2016.00913
  52. 52. Springer CJ, Ward JK. Flowering time and elevated atmospheric CO2. New Phytol. 2007;176(2):243–55. https://doi.org/10.1111/j.1469-8137.2007.02196.x
  53. 53. Bunce JA. Elevated carbon dioxide effects on reproductive phenology and seed yield among soybean cultivars. Crop Sci. 2015;55(1):339–43. https://doi.org/10.2135/cropsci2014.04.0273
  54. 54. Sreeharsha RV, Sekhar KM, Reddy AR. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci. 2015;231:82–93. https://doi.org/10.1016/j.plantsci.2014.11.012
  55. 55. Nagatoshi Y, Fujita Y. Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol. 2019;60(1):77–84. https://doi.org/10.1093/pcp/pcy189
  56. 56. Tanaka J, Hayashi T, Iwata H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci. 2016;15038. https://doi.org/10.1270/jsbbs.15038
  57. 57. Bermejo C, Gatti I, Cointry E. In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell, Tissue Organ Cult. 2016;127(3):585–90. https://doi.org/10.1007/s11240-016-1065-7
  58. 58. Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A. Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. Vitr Cell Dev Biol. 2015;51(1):71–9. https://doi.org/10.1007/s11627-014-9647-8
  59. 59. Mobini S, Khazaei H, Warkentin TD, Vandenberg A. Shortening the generation cycle in faba bean (Vicia faba) by application of cytokinin and cold stress to assist speed breeding. Plant Breed. 2020;139(6):1181–9. https://doi.org/10.1007/s11627-016-9772-7
  60. 60. Mobini SH, Warkentin TD. A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). Vitr Cell Dev Biol. 2016;52(5):530–6. https://doi.org/10.1007/s11627-016-9772-7
  61. 61. Yao Y, Zhang P, Liu H, Lu Z, Yan G. A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell, Tissue Organ Cult. 2017;128(3):655–61. https://doi.org/10.1007/s11240-016-1145-8
  62. 62. Saxena K, Saxena RK, Varshney RK. Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed. 2017;136(6):954–7. https://doi.org/10.1111/pbr.12538
  63. 63. Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, et al. Breeding more crops in less time: a perspective on speed breeding. Biology (Basel). 2022;11(2):275. https://doi.org/10.3390/biology11020275
  64. 64. Ćeran M, Miladinović D, Đorđević V, Trkulja D, Radanović A, Glogovac S, et al. Genomics-assisted speed breeding for crop improvement: present and future. Front Sustain Food Syst. 2024;8:1383302. https://doi.org/10.3389/fsufs.2024.1383302
  65. 65. Collins Francis S, Green Eric D, Guttmacher Alan E, Guyer Mark S. A vision for the future of genomics research. Nature. 2003;422(6934):835–47. https://doi.org/10.1038/nature01626
  66. 66. Majid A, Parray GA, Wani SH, Kordostami M, Sofi NR, Waza SA, et al. Genome editing and its necessity in agriculture. Int J Curr Microbiol Appl Sci. 2017;6:5435–43. https://doi.org/10.20546/ijcmas.2017.611.520
  67. 67. Mujjassim NE, Mallik M, Rathod NKK, Nitesh SD. Cisgenesis and intragenesis a new tool for conventional plant breeding: A review. J Pharmacogn Phytochem. 2019;8:2485–9.
  68. 68. Dreher K, Morris M, Khairallah M. Cost-effective compared with conventional plant breeding methods? Econ Soc issues Agric Biotechnol. 2002;203. https://doi.org/10.1079/9780851996189.0203
  69. 69. Fehr WR. Principles of cultivar development. Volume 1. Theory and technique. Macmillan publishing company. 1987. https://doi.org/10.1186/s13007-019-0464-2
  70. 70. Arbelaez JD, Tandayu E, Reveche MY, Jarana A, van Rogen P, Sandager L, et al. Methodology: ssb-MASS: a single seed-based sampling strategy for marker-assisted selection in rice. Plant Methods. 2019;15(1):1–11. https://doi.org/10.1186/s13007-019-0464-2
  71. 71. Funada M, Helms TC, Hammond JJ, Hossain K, Doetkott C. Single-seed descent, single-pod, and bulk sampling methods for soybean. Euphytica. 2013;192(2):217–26. https://doi.org/10.1007/s10681-012-0837-3
  72. 72. Urrea CA, Singh SP. Comparison of mass, F2-derived family, and single-seed-descent selection methods in an interracial population of common bean. Can J Plant Sci. 1994;74(3):461–4. https://doi.org/10.4141/cjps94-085
  73. 73. Priyadarshan PM. Plant breeding: classical to modern. Singapore: Springer. 2019. https://doi.org/10.1007/978-981-13-7095-3
  74. 74. Pignone D, De Paola D, Rapanà N, Janni M. Single seed descent: a tool to exploit durum wheat (Triticum durum Desf.) genetic resources. Genet Resour Crop Evol. 2015;62(7):1029–35. https://doi.org/10.1007/s10722-014-0206-2
  75. 75. Bordes J, Charmet G, De Vaulx RD, Lapierre A, Pollacsek M, Beckert M, et al. Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population. Euphytica. 2007;154(1):41–51. https://doi.org/10.1007/s10681-006-9266-5
  76. 76. Ma H, Busch RH, Riera-Lizarazu O, Rines HW, Dill-Macky R. Agronomic performance of lines derived from anther culture, maize pollination and single-seed descent in a spring wheat cross. Theor Appl Genet. 1999;99(3):432–6. https://doi.org/10.1007/s001220051254
  77. 77. Destro D, Bizeti HS, Garcia LA, Fonseca IC de B, Montalván R, Miglioranza É. Comparison between the SPD and the SPDS methods for segregating generation advancement in soybean. Brazilian Arch Biol Technol. 2003;46:545–51. https://doi.org/10.1590/S1516-89132003000400008
  78. 78. Hickey LT, Dieters MJ, DeLacy IH, Christopher MJ, Kravchuk OY, Banks PM. Screening for grain dormancy in segregating generations of dormant× non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica. 2010;172(2):183–95. https://doi.org/10.1007/s10681-009-0028-z
  79. 79. Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, et al. Speed breeding for multiple quantitative traits in durum wheat. Plant Methods. 2018;14(1):1–15. https://doi.org/10.1186/s13007-018-0302-y
  80. 80. Christopher J, Richard C, Chenu K, Christopher M, Borrell A, Hickey L. Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing, water-limited, Australian environments. Procedia Environ Sci. 2015;29:175–6. https://doi.org/10.1016/j.proenv.2015.07.246
  81. 81. Ochatt SJ, Sangwan RS. In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Organ Cult. 2008;93(2):133–7. https://doi.org/10.1007/s11240-008-9351-7
  82. 82. Saxena KB, Saxena RK, Hickey LT, Varshney RK. Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica. 2019;215(12):1–7. https://doi.org/10.1007/s10681-019-2520-4
  83. 83. Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, et al. Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci. 2017;20(4):337–52. https://doi.org/10.1080/1343943X.2017.1391705
  84. 84. Forster BP, Till BJ, Ghanim AMA, Huynh HOA, Burstmayr H, Caligari PDS. Accelerated plant breeding. CAB Rev. 2014;9:1–16. https://doi.org/10.1079/PAVSNNR20149043
  85. 85. Jähne F, Hahn V, Würschum T, Leiser WL. Speed breeding short-day crops by LED-controlled light schemes. Theor Appl Genet. 2020;133(8):2335–42. https://doi.org/10.1007/s00122-020-03601-4
  86. 86. Hickey LTN, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, et al. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–54. https://doi.org/10.1038/s41587-019-0152-9
  87. 87. Klose R, Penlington J, Ruckelshausen A. Usability study of 3D time-of-flight cameras for automatic plant phenotyping. Bornimer Agrartech Berichte. 2009;69(93–105):12.
  88. 88. Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078–111. https://doi.org/10.3390/s141120078
  89. 89. Sabetta W, Alba V, Blanco A, Montemurro C. sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods. 2011;7(1):1–13. https://doi.org/10.1186/1746-4811-7-20
  90. 90. Walter MH, Stauder R, Tissier A. Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis. Plant Sci. 2015;233:1–10. https://doi.org/10.1016/j.plantsci.2014.12.017
  91. 91. Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 2011;191(3):895–907. https://doi.org/10.1111/j.1469-8137.2011.03756.x
  92. 92. Christopher J, Richard C, Chenu K, Christopher M, Borrell A, Hickey L. Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing, water-limited, Australian environments. Procedia Environ Sci. 2015;29:175–6. https://doi.org/10.1016/j.proenv.2015.07.246
  93. 93. El-Hashash EF, El-Absy KM. Barley (Hordeum vulgare L.) breeding. In: Advances in plant breeding strategies: Cereals. Springer. 2019. p. 1–45. https://doi.org/10.1007/978-3-030-23108-8_1
  94. 94. Wolter F, Schindele P, Puchta H. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019;19(1):1–8. https://doi.org/10.1186/s12870-019-1775-1
  95. 95. Meuwissen T. Genomic selection: the future of marker-assisted selection and animal breeding. In: Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD, editors. Marker-assisted selection: a fast track to increase genetic gain in plants and animals. Rome: FAO & IPGRI. 2003. p. 54–59.
  96. 96. Jighly A, Lin Z, Pembleton LW, Cogan NOI, Spangenberg GC, Hayes BJ, et al. Boosting genetic gain in allogamous crops via speed breeding and genomic selection. Front Plant Sci. 2019;10:1364. https://doi.org/10.3389/fpls.2019.01364
  97. 97. Morris ML, Bellon MR. Participatory plant breeding research: opportunities and challenges for the international crop improvement system. Euphytica. 2004;136(1):21–35. https://doi.org/10.1023/B:EUPH.0000019509.37769.b1
  98. 98. Morris M, Edmeades G, Pehu E. The global need for plant breeding capacity: What roles for the public and private sectors? HortScience. 2006;41(1):30–9. https://doi.org/10.21273/HORTSCI.41.1.30
  99. 99. Tripp R, Louwaars N, Eaton D. Plant variety protection in developing countries. A report from the field. Food Policy. 2007;32(3):354–71. https://doi.org/10.1016/j.foodpol.2006.09.003
  100. 100. Ribaut JM, De Vicente MC, Delannay X. Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol. 2010;13(2):213–18. https://doi.org/10.1016/j.pbi.2009.12.011
  101. 101. Chiurugwi T, Kemp S, Powell W, Hickey LT. Speed breeding orphan crops. Theor Appl Genet. 2019;132(3):607–16. https://doi.org/10.1007/s00122-018-3202-7

Downloads

Download data is not yet available.