Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Deciphering the antifungal activity of Lentinus squarrosulus against Fusarium wilt in tomato

DOI
https://doi.org/10.14719/pst.11237
Submitted
11 August 2025
Published
24-11-2025 — Updated on 04-12-2025
Versions

Abstract

Fusarium wilt, caused by Fusarium oxysporum f. sp. Lycopersici, is a major soil-borne disease threatening tomato (Solanum lycopersicum) production worldwide, causing yield losses of up to 80 %. This study evaluated the antifungal potential of the medicinal mushroom Lentinus squarrosulus against FOL, aiming to identify bioactive metabolites for sustainable disease management. FOL was isolated from infected tomato plants in Coimbatore, identified morphologically and molecularly (GenBank accession PQ350410) and used for in vitro assays. Nine macro basidiomycetes were screened via dual culture assay; L. squarrosulus TNAU L3 showed the highest mycelial growth inhibition (55.72 %), followed by Auricularia auricular (49.26 %) and L. squarrosulus TNAU L2 (43.74 %). Ethyl acetate extracts of L. squarrosulus significantly inhibited F. oxysporum f. sp. lycopersici growth in agar well diffusion assays, with inhibition increasing from 37.44 % at 500 ppm to 67.53 % at 2000 ppm. GC-MS analysis of extracts revealed antimicrobial compounds including eicosatrienoic acid, benzofuran, isopimaric acid and cyclododecanol, linked to antifungal and immunomodulatory activities. Pathway analysis indicated these metabolites are synthesized via the pentose phosphate pathway, contributing to both direct pathogen suppression and enhancement of plant defense through metabolic modulation. The dual mechanism-pathogen inhibition and host immunity activation-suggests L. squarrosulus as a promising eco-friendly biocontrol agent. This work highlights the potential of macrobasidiomycete-derived metabolites as alternatives to synthetic fungicides and provides a preliminary framework for developing natural fungicidal formulations. Further field validation and optimization of metabolite application are needed to advance integrated management strategies for Fusarium wilt in tomato.

References

  1. 1. Shanmugam SP, Murugan M, Shanthi M, Elaiyabharathi T, Angappan K, Karthikeyan G, et al. Evaluation of integrated pest and disease management combinations against major insect pests and diseases of tomato in Tamil Nadu, India. Horticulturae. 2024;10(7):766.
  2. 2. Ma M, Taylor PW, Chen D, Vaghefi N, He JZ. Major soilborne pathogens of field processing tomatoes and management strategies. Microorganisms. 2023;11(2):263. https://doi.org/10.3390/microorganisms11020263
  3. 3. Muhorakeye MC, Namikoye ES, Khamis FM, Wanjohi W, Akutse KS. Biostimulant and antagonistic potential of endophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici. Sci Rep. 2024;14(1):15365. https://doi.org/10.1038/s41598-024-66101-1
  4. 4. Haruna SG, Yahuza L, Tijjani I. Management of Fusarium wilt of tomato (Fusarium oxysporum f. sp. lycopersici) and related soil-borne diseases using eco-friendly methods: a review. Asian J Res Crop Sci. 2024;9(1):154-68. https://doi.org/10.9734/AJRCS/2024/v9i1257
  5. 5. Dita M, Barquero M, Heck D, Mizubuti ES, Staver CP. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci. 2018;9:1468. https://doi.org/10.3389/fpls.2018.01468
  6. 6. Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity - A review. Saudi J Biol Sci. 2019;26(7):1315-24. https://doi.org/10.1016/j.sjbs.2019.06.002
  7. 7. Maurya S, Dubey S, Kumari R, Verma R. Management tactics for Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Manage. 2019;4(5):1-7.
  8. 8. Ajilogba CF, Babalola OO. Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci. 2013;18(3):117-27. https://doi.org/10.4265/bio.18.117
  9. 9. Bastakoti S, Belbase S, Manandhar S, Arjyal C. Trichoderma species as biocontrol agent against soil-borne fungal pathogens. Nepal J Biotechnol. 2017;5(1):39-45. https://doi.org/10.3126/njb.v5i1.18492
  10. 10. Akutse KS, Subramanian S, Maniania NK, Dubois T, Ekesi S. Biopesticide research and product development in Africa for sustainable agriculture and food security - Experiences from the International Centre of Insect Physiology and Ecology (icipe). Front Sustain Food Syst. 2020;4:563016. https://doi.org/10.3389/fsufs.2020.563016
  11. 11. Dulay RM, Pamiloza DG. Proximate composition and bioactivities of hairy sawgill mushroom, Lentinus strigosus (BIL 1324) from the Philippines. Int J Biol Pharm Allied Sci. 2018;7(3). https://doi.org/10.31032/ijbpas/2018/7.3.4400
  12. 12. Aquino YK, Vega LD, Medrano NR, Dulay RM. Mycochemicals, antioxidant and cytotoxic activities of Polyporus grammocephalus Berk (BIL 7749). Int J Biol Pharm Allied Sci. 2018;7(6):966-75. https://doi.org/10.31032/IJBPAS/2018/7.6.4455
  13. 13. Dulay RM, Batangan JN, Kalaw SP, De Leon AM, Cabrera EC, Kimura K, et al. Records of wild mushrooms in the Philippines: A review. J Appl Biol Biotechnol. 2023;11(2):11-32. https://doi.org/10.7324/JABB.2023.110202
  14. 14. Dulay RM, Miranda LA, Malasaga JS, Kalaw SP, Reyes RG, Hou CT. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatal Agric Biotechnol. 2017;9:141-4. https://doi.org/10.1016/j.bcab.2016.12.003
  15. 15. Ishihara A, Sugai N, Bito T, Ube N, Ueno K, Okuda Y, et al. Isolation of 6-hydroxy-L-tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor. Biosci Biotechnol Biochem. 2019;83(10):1800-6. https://doi.org/10.1080/09168451.2019.1621157
  16. 16. Cabutaje EM, Ueno K, Osaki-Oka K, Kido K, Dela Cruz TE, Ishihara A. Identification of two phthalide derivatives and an oxindole compound isolated from the edible mushroom Pleurotus ostreatus and their inhibitory activities against plant pathogenic microorganisms. J Pestic Sci. 2023;48(4):156-67. https://doi.org/10.1584/jpestics.D23-039
  17. 17. Muniyappan G, Gurudevan T, Thangaraj P, Balamurali AS, Iyadurai AP, Suppaiah R, et al. Benzothiazole - An antifungal compound derived from medicinal mushroom Ganoderma lucidum against mango anthracnose pathogen Colletotrichum gloeosporioides (Penz & Sacc.). Molecules. 2023;28(6):2476. https://doi.org/10.3390/molecules28062476
  18. 18. Rangaswami G, Mahadevan A. Diseases of crop plants in India. PHI Learn Pvt Ltd; 1998.
  19. 19. Koley S, Mahapatra SS. Evaluation of culture media for growth characteristics of Alternaria solani, causing early blight of tomato. J Plant Pathol Microbiol. 2015;1(5).
  20. 20. Vincent JM. Distortion of fungal hyphae in the presence of certain inhibitors. Nature. 1947;159(4051):850. https://doi.org/10.1038/159850b0
  21. 21. Sangeetha C, Krishnamoorthy AS, Amirtham D. Antifungal bioactive compounds from Chinese caterpillar fungus (Ophiocordyceps sinensis (Berk.) G.H. Sung et al.) against plant pathogens. Madras Agric J. 2015;102(1).
  22. 22. Stroke JE, Ridgway GL. Clinical bacteriology. London: Edward Arnold Ltd; 1980. p. 143.
  23. 23. Gomez KA, Gomez AA. Statistical procedures for agricultural research. John Wiley & Sons; 1984.
  24. 24. Dharani S, Thiribhuvanamala G, Angappan K, Swarnakumari N, Jeya Sundara Sharmila D, Manikanda Boopathi N. Mushroom-derived antimicrobials - A source of eco-friendly antimicrobial compounds against phytopathogens. J Plant Pathol. 2025;1-5.
  25. 25. Mohd-Baseri N, Kheirel Anuar MS, Shamsuhazli NA, Zulkifli MA, Wasoh H, et al. Antagonistic activity of wild growing mushrooms against various fungal rice pathogens. Int Microbiol. 2023;26(1):91-8. https://doi.org/10.1007/s10123-022-00275-4
  26. 26. Fraternale D, Ricci D, Epifano F, Curini M. Composition and antifungal activity of two essential oils of hyssop (Hyssopus officinalis L.). J Essent Oil Res. 2004;16(6):617-22.
  27. 27. Abuelizz HA, Anouar EH, Ahmad R, Azman NI, Marzouk M, Al-Salahi R. Triazoloquinazolines as a new class of potent α-glucosidase inhibitors: In vitro evaluation and docking study. PLoS One. 2019;14(8):e0220379.
  28. 28. Nagaraj G, Rengasamy K, Thiruvengadam R, Karthikeyan M, Shanmugam V, Narayanan S. Morpho-molecular characterization of Clonostachys rosea and deciphering its biomolecules untangles the antifungal action against Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol. 2023;125:102013.
  29. 29. Thangaraj P, Subbiah KA, Uthandi S, Amirtham D. Antifungal volatiles from macrobasidiomycetes inhibit Fusarium oxysporum f. sp. lycopersici. Madras Agric J. 2021:26-31. https://doi.org/10.29321/MAJ.2020.000382
  30. 30. Ganesh Saravanan K, Thiribhuvanamala G, Praveen T, Mahalakshmi P, Angappan K, et al. Harnessing nature’s treasure of bioactive compounds from ethnomedicinal macromycete Lentinus squarrosulus Mont. Plant Sci Today. 2024;11:5903. https://doi.org/10.14719/pst.5903
  31. 31. Muto Y, Fukushima-Sakuno E, Ishihara A, Osaki-Oka K. Antimicrobial activity of octan-3-one released from spent mushroom substrate of shiitake (Lentinula edodes) and its inhibitory effects on plant diseases. J Gen Plant Pathol. 2023;89(2):122-31. https://doi.org/10.1007/s10327-022-01110-4
  32. 32. Thangaraj P, Balamurali AS, Subbiah KA, Sevugapperumal N, Gurudevan T, Uthandi S, et al. Antifungal volatilomes mediated defense mechanism against Fusarium oxysporum f. sp. lycopersici, the incitant of tomato wilt. Molecules. 2022;27(11):3631.
  33. 33. Ogboo BC, Grabovyy UV, Maini A, Scouten S, van der Vliet A, Mattevi A, Heppner DE. Architecture of the NADPH oxidase family of enzymes. Redox Biol. 2022;52:102298.
  34. 34. Ravi D, Beheshti A, Abermil N, Lansigan F, Kinlaw W, Matthan NR, Mokhtar M, Passero FC Jr, Puliti P, David KA, Dolnikowski GG. Oncogenic integration of nucleotide metabolism via fatty acid synthase in non-Hodgkin lymphoma. Front Oncol. 2021;11:725137.
  35. 35. Dhal S, Pal H. Regulation of glycolysis and Krebs cycle during biotic and abiotic stresses. In: Photosynthesis and respiratory cycles during environmental stress response in plants. Apple Academic Press; 2022. p. 263-308.
  36. 36. Stracquadanio C, Quiles JM, Meca G, Cacciola SO. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J Fungi. 2020;6(4):263. https://doi.org/10.3390/jof6040263

Downloads

Download data is not yet available.