Research Articles
Early Access
Comparative nutritional and phytochemical screening of a wild edible fern: Diplazium maximum (D. Don) C. Chr. from north-western Himalayan regions of Himachal Pradesh
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Department of Plant Sciences, Central University of Himachal Pradesh, Kangra 176 206, Himachal Pradesh, India
Abstract
A comparative assessment of Diplazium maximum (D. Don) C. Chr. young edible fronds revealed significant variations (p ≤ 0.05) in nutritional and bioactive properties across Shimla (SA), Mandi (SB) and Chamba districts (SC) of Himachal Pradesh. SC and SB fronds exhibited the highest content of moisture (92.78 %), total energy (1353.61 KJ/100 g), crude fat (2.86 %), total ash (12.64 %) and total carbohydrates (50.78 %), dietary fiber (40.54 %), total soluble sugar (1.60 %), respectively. The significantly highest (p ≤ 0.05) protein (28.02 %), calcium ( Ca 0.12 %), iron (Fe 0.0157 %), copper (Cu 0.0026 %) and manganese (Mn 0.0021 %) content was recorded at SA. Antioxidant profiling showed the significant activity in SB hydro-alcoholic extract, demonstrating the lowest IC50 values (53.31 and 50.69 µg/mL) for 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays corresponding to the highest total phenolics (TP=90.71 mg GAE/g) and flavonoids (TF=75.65 mg QE/g) concentration. Phytochemicals screening also confirmed the presence of alkaloids, phenolics, flavonoids, terpenoids, glycosides, tannins and saponins. Total chlorophyll (50.53 µg/100 g) and total carotenoids (7.48 µg/100 g) content varied significantly (p ≤ 0.05) across all sites, being highest in SB and SC fronds respectively. Fatty acids profiling through gas chromatography-mu ass spectrometry (GC-MS) revealed dominance of methyl palmitate (85.5 %) and methyl lignocarate (18.97 %). Overall, D. maximum fronds exhibit strong nutritional, bioactive and antioxidant potential, supporting their value as a sustainable wild edible resource for enhancing food security and future nutraceutical applications.
References
- 1. Lense OBE. Biological screening of selected traditional medicinal plants species utilized by local people of Manokwari, West Papua Province. Nusantara Biosci. 2011;3(3). https://doi.org/10.13057/nusbiosci/n030306
- 2. Bisht IS, Mehta PS, Negi KS, Rawat R, Singh R, Garkot S. Wild plant food resources in agricultural systems of Uttarakhand Hills in India and its potential role in combating malnutrition and enhancing human health. J Food Sci Toxicol. 2017;2(1):3.
- 3. Gupta SM, Ballabh B, Yadav PK, Agarwal A, Bala M. Nutrients analysis of Diplazium esculentum: underutilized wild wetland pteridophytes ensure food and nutritional security. Acta Sci Nutr Health. 2020;4(11):46-9.
- 4. Thakur D, Sharma A, Uniyal SK. Why they eat, what they eat: patterns of wild edible plants consumption in a tribal area of Western Himalaya. J Ethnobiol Ethnomed. 2017;13(1):70. https://doi.org/10.1186/s13002-017-0198-z
- 5. George MV, Christopher G. Nutritional value of selected wild edible leaves used by tribal communities of Attappady, Southern Western Ghats. Int J Food Sci Nutr. 2017;2:126-32.
- 6. Maroyi A. Not just minor wild edible forest products: consumption of pteridophytes in sub-Saharan Africa. J Ethnobiol Ethnomed. 2014;10(1):78. https://doi.org/10.1186/1746-4269-10-78
- 7. Liu Y, Wujisguleng W, Long C. Food uses of ferns in China: a review. Acta Soc Bot Pol. 2012;81(4).
- 8. Choudhury J, Majumdar S, Roy S, Chakraborty U. Antioxidant activity and phytochemical screening of two edible wetland pteridophytes Diplazium esculentum (Retz.) Sw. and Marsilea minuta L.: a comparative study. World J Pharm Med Res. 2017;3(9):195-203.
- 9. Yumkham SD, Chakpram L, Salam S, Bhattacharya MK, Singh PK. Edible ferns and fern-allies of North East India: a study on potential wild vegetables. Genet Resour Crop Evol. 2017;64(3):467-77. https://doi.org/10.1007/s10722-016-0372-5
- 10. Sharma P, Kumar P. In vitro cultivation and phytochemistry of Diplazium esculentum (Retz.) Sw.: an important Himalayan pteridophyte. Int J Bot Stud. 2021;6(5):105-10.
- 11. Sharma P, Kumar P, Bhatt AK. Antimicrobial properties of green synthesized silver nanoparticles from Diplazium maximum (D. Don) C. Chr. Sustain Chem One World. 2025. https://doi.org/10.1016/j.scowo.2025.100157
- 12. Chakraborty R, Roy S. Exploration of the diversity and associated health benefits of traditional pickles from the Himalayan and adjacent hilly regions of Indian subcontinent. J Food Sci Technol. 2018;55(5):1599-613.
- 13. Kaushik A, Jijta C, Kaushik JJ, Zeray R, Ambesajir A, Beyene L. FRAP assay and effect of Diplazium esculentum (Retz.) Sw., a green vegetable of North India, on central nervous system. Indian J Nat Prod Resour. 2012;3(2):228-31.
- 14. Akter S, Hossain MM, Ara I, Akhtar P. Investigation of in vitro antioxidant, antimicrobial and cytotoxic activity of Diplazium esculentum (Retz.) Sw. Int J Adv Pharm Biol Chem. 2014;3(3):723-33.
- 15. Singh L, Singh S, Singh K, Jadu E. Ethnobotanical uses of some pteridophytic species in Manipur. Indian Fern J. 2001;18(1-2):14-7.
- 16. Amit S, Singh FM. In vitro anthelmintic activity of Diplazium esculentum (Retz.) Sw. rhizome extract. J Pharmacogn Phytochem. 2012;1(4):84-7.
- 17. Chawla S, Chawla S, Ram V, Semwal A, Singh R. Analgesic activity of medicinally important leaf of Diplazium esculentum. Afr J Pharm Pharmacol. 2015;9(25):628-32.
- 18. Junejo JA, Gogoi G, Islam J, Rudrapal M, Mondal P, Hazarika H, et al. Exploration of antioxidant, antidiabetic and hepatoprotective activity of Diplazium esculentum, a wild edible plant from North Eastern India. Future J Pharm Sci. 2018;4(1):93-101. https://doi.org/10.1016/j.fjps.2017.10.005
- 19. Rana D, Bhatt A, Lal B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude Adhwari’s of Churah subdivision, district Chamba, Western Himalaya. J Ethnobiol Ethnomed. 2019;15(1):10. https://doi.org/10.1186/s13002-019-0286-3
- 20. Sareen B, Bhattacharya A, Srivatsan V. Nutritional characterization and chemical composition of Diplazium maximum (D. Don) C. Chr. J Food Sci Technol. 2021;58(3):844-54. https://doi.org/10.1007/s13197-020-04598-w
- 21. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. 18th ed. Gaithersburg (MD): AOAC; 2005.
- 22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6. https://doi.org/10.1021/ac60111a017
- 23. Adam CA, Rinnie RW, Fjerstad MC. Starch deposition and carbohydrate activity in developing and germinating soybean seeds. Ann Bot. 1980;45:577-82.
- 24. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-8. https://doi.org/10.1021/ac60147a030
- 25. Pradeep PM, Dharmaraj U, Sathyendra Rao BV, Senthil A, Vijayalakshmi NS, Malleshi NG, et al. Formulation and nutritional evaluation of multigrain ready-to-eat snack mix from minor cereals. J Food Sci Technol. 2014;51(12):3812-20.
- 26. Siddhuraju P, Vijayakumari K, Janardhanan K. Nutritional and chemical evaluation of raw seeds of the tribal pulse Vigna trilobata (L.) Verdc. Int J Food Sci Nutr. 1992;43(2):97-103.
- 27. Christie WW. Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW, editor. Advances in lipid methodology. Dundee: Oily Press; 1993. p. 69-111.
- 28. Sofowara A. Screening plants for bioactive agents. In: Medicinal plants and traditional medicine in Africa. 2nd ed. Ibadan: Spectrum Books Ltd; 1993. p. 81-93.
- 29. Harborne AJ. Phytochemical methods: a guide to modern techniques of plant analysis. Springer Science & Business Media; 1998. p. 1-30.
- 30. Trease GE, Evans WC. Pharmacognosy. 11th ed. London: Bailliere Tindall; 1989. p. 45-50.
- 31. Friedman M. Applications of the ninhydrin reaction for analysis of amino acids, peptides and proteins to agricultural and biomedical sciences. J Agric Food Chem. 2004;52(3):385-406.
- 32. Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-82. https://doi.org/10.1016/0076-6879(87)48036-1
- 33. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73(1):73-84. https://doi.org/10.1016/S0308-8146(00)00288-0
- 34. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178-82. https://doi.org/10.38212/2224-6614.2748
- 35. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
- 36. Singh S, Ikram M, Sharma PC. Influence of climatic conditions on metabolite production in some Himalayan plants: a literature review. Metabolomics. 2025;21:172. https://doi.org/10.1007/s11306-025-02375-4
- 37. Adugna G. A review on impact of compost on soil properties, water use and crop productivity. Acad Res J Agri Sci Res. 2016;4:93-104. https://doi.org/10.14662/ARJASR2016.010
- 38. Bushway AA, Wilson AM, McGann DF, Bushway RJ. The nutrient composition of fresh fiddlehead greens. J Food Sci. 1982;47(2):666-7. https://doi.org/10.1111/j.1365-2621.1982.tb10147.x
- 39. Tongco JVV, Villaber RAP, Aguda RM, Razal RA. Nutritional and phytochemical screening and total phenolic and flavonoid content of Diplazium esculentum (Retz.) Sw. from Philippines. J Chem Pharm Res. 2014;6(8):238-42.
- 40. Pradhan S, Manivannan S, Tamang JP. Proximate, mineral composition and antioxidant properties of some wild leafy vegetables. J Sci Ind Res. 2015;74:155-9.
- 41. Chettri S. Nutrient and elemental composition of wild edible ferns of the Himalaya. Am Fern J. 2018;108(3):95-106. https://doi.org/10.1640/0002-8444-108.3.95
- 42. Gopalan G, Sastri R, Balasubramanian SC. Nutritive value of Indian foods. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research; 2004.
- 43. Bhatti RC, Kaur R, Kumar A, Kumar V, Singh S, Kumar P, et al. Nutrient component analyses of selected wild edible plants from Hamirpur district of Himachal Pradesh, India: an evaluation for future food. Vegetos. 2022;35(2):545-50. https://doi.org/10.1007/s42535-021-00336-5
- 44. Gupta S, Hegde AS, Das S, Joshi R, Srivatsan V. Bioactive compounds from wild edible plants of Western Himalayas: nutritional profile, UHPLC-QTOF-IMS-based phytochemical characterization and their in vitro gastrointestinal digestibility. ACS Food Sci Technol. 2024;4(11):2707-23. https://doi.org/10.1021/acsfoodscitech.4c00637
- 45. Sahal A, Hussain A, Kumar S, Dobhal A, Ahmad W, Chand K, et al. Nettle (Urtica dioica) leaves as a novel food: nutritional, phytochemical profiles and bioactivities. Food Chem X. 2025;28:102607. https://doi.org/10.1016/j.fochx.2025.102607
- 46. Nagraj GS, Chouksey A, Jaiswal S, Jaiswal AK. Broccoli. In: Jaiswal AK, editor. Nutritional composition and antioxidant properties of fruits and vegetables. Academic Press; 2020. p. 5-17. https://doi.org/10.1016/B978-0-12-812780-3.00001-5
- 47. Dufoo-Hurtado MD, Vazquez-Barrios ME, Ramirez-Gonzalez E, Vazquez-Celestino D, Rivera-Pastrana DM, Mercado-Silva E. Nutritional, nutraceutical and functional properties of flours obtained from broccoli waste material dried at different temperatures. Acta Hortic. 2019;1292:137-44. https://doi.org/10.17660/ActaHortic.2020.1292.18
- 48. López-Cervantes J, Tirado-Noriega LG, Sánchez-Machado DI, Campas-Baypoli ON, Cantú-Soto EU, Núñez-Gastélum JA. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int J Food Sci Technol. 2013;48(11):2267-75. https://doi.org/10.1111/ijfs.12213
- 49. Galla NR, Pamidighantam PR, Karakala B, Gurusiddaiah MR, Akula S. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int J Gastronomy Food Sci. 2017;7:20-26. https://doi.org/10.1016/j.ijgfs.2016.12.003
- 50. Bassey ME, Etuk EUI, Ibe MM, Ndon BA. Diplazium sammatii Athyraceae (Nyama Idim’): age-related nutritional and antinutritional analysis. Plant Foods Hum Nutr. 2001;56(1):7-12. https://doi.org/10.1023/A:1008185513685
- 51. Wali A, Sharma S, Walia M, Kumar P, Thakur S, Kumari A, et al. Two edible ferns of Western Himalaya: a comparative in vitro nutritional assessment, antioxidant capacity and quantification of lutein by UPLC-DAD. Int J Food Nutr Sci. 2016;5:9.
- 52. Thapliyal P. The elevational effect on soil parameters and biochemical constituents of Bergenia stracheyi, an important medicinal plant of Garhwal Himalaya. Adv Appl Sci Res. 2023;14.
- 53. Cheaib A, Waring EF, McNellis R, Perkowski EA, Martina JP, Seabloom EW, et al. Soil nitrogen supply exerts largest influence on leaf nitrogen in environments with greatest leaf nitrogen demand. Ecol Lett. 2025;28(1):e70015. https://doi.org/10.1111/ele.70015
- 54. García-Parra M, Roa-Acosta D, Bravo-Gómez JE. Effect of the altitude gradient on the physiological performance of quinoa in the Central Region of Colombia. Agronomy. 2022;12(9):2112. https://doi.org/10.3390/agronomy12092112
- 55. Niinemets Ü, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 2015;205(3):973-93. https://doi.org/10.1111/nph.13096
- 56. Hanba YT, Nishida K, Tsutsui Y, Matsumoto M, Yasui Y, Sizhe Y, et al. Leaf optical properties and photosynthesis of fern species with a wide range of divergence time in relation to mesophyll anatomy. Ann Bot. 2023;131(3):437-50. https://doi.org/10.1093/aob/mcad025
- 57. Thakur A, Singh S, Dulta K, Singh N, Ali B, Hafeez A, et al. Nutritional evaluation, phytochemical makeup, antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis, a tribal community in the Western Himalayas. Front Agron. 2022;4:1010309. https://doi.org/10.3389/fagro.2022.1010309
- 58. Binish T, Pushpa R. Pharmaceutical and nutraceutical potential of three endemic species of Ceropegia. Ann Plant Sci. 2018;7:2221. https://doi.org/10.21746/aps.2018.7.5.3
- 59. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188-205. https://doi.org/10.1111/j.1753-4887.2009.00189.x
- 60. Sundriyal M, Sundriyal RC. Wild edible plants of the Sikkim Himalaya: nutritive values of selected species. Econ Bot. 2001;55:377-90. https://doi.org/10.1007/BF02866561
- 61. Pathan S, Ndunguru G, Ayele AG. Comparison of the nutritional composition of quinoa (Chenopodium quinoa Willd.) inflorescences, green leaves and grains. Crops. 2024;4(1):72-81. https://doi.org/10.3390/crops4010006
- 62. Datta S, Sinha BK, Bhattacharjee S, Seal T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water-soluble vitamins and phenolics by RP-HPLC in some lesser-used wild edible plants. Heliyon. 2019;5(3):e01431. https://doi.org/10.1016/j.heliyon.2019.e01431
- 63. Maikhuri RK, Parshwan DS, Kewlani P, Negi VS, Rawat S, Rawat LS. Nutritional composition of seed kernel and oil of wild edible plant species from Western Himalaya, India. Int J Fruit Sci. 2021;21(1):609-18. https://doi.org/10.1080/15538362.2021.1907009
- 64. Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://doi.org/10.3389/fphys.2017.00902
- 65. Amado PA, Ferraz V, da Silva DB, Carollo CA, Castro AHF, Alves Rodrigues dos Santos Lima L. Chemical composition, antioxidant and cytotoxic activities of extracts from the leaves of Smilax brasiliensis Spreng. Nat Prod Res. 2018;32(5):610-5. https://doi.org/10.1080/14786419.2017.1327861
- 66. Anand M, Basavaraju R. A review on phytochemistry and pharmacological uses of Tecoma stans (L.) Juss. ex Kunth. J Ethnopharmacol. 2021;265:113270. https://doi.org/10.1016/j.jep.2020.113270
- 67. Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999;70(1):1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
- 68. Sharma BK, Doll KM, Erhan SZ. Ester hydroxy derivatives of methyl oleate: tribological, oxidation and low temperature properties. Bioresour Technol. 2008;99(15):7333-40. https://doi.org/10.1016/j.biortech.2007.12.057
- 69. Martinez-Garcia M, Van Hecke W, Peeters H, Gabriels D, Van der Weeen P, Dejonghe W, et al. Methyl oleate for plant protection product formulations: enzymatic synthesis, reaction kinetics and application testing. J Biotechnol. 2024;379:78-86. https://doi.org/10.1016/j.jbiotec.2023.12.004
- 70. European Food Safety Authority. Dietary reference values for nutrients: summary report. EFSA. 2017:e15121. p. 98. https://doi.org/10.2903/sp.efsa.2017.e15121
- 71. Siemionow M, Demir Y. Diabetic neuropathy: pathogenesis and treatment. J Reconstr Microsurg. 2004;20(3):241-52. https://doi.org/10.1016/B978-044452809-4/50165-4
- 72. Ordway RW, Walsh JV Jr, Singer JJ. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science. 1989;244(4909):1176-9. https://doi.org/10.1126/science.2471269
- 73. Horimoto N, Nabekura J, Ogawa T. Arachidonic acid activation of potassium channels in rat visual cortex neurons. Neuroscience. 1997;77(3):661-71. https://doi.org/10.1016/S0306-4522(96)00490-3
- 74. Elinder F, Liin SI. Actions and mechanisms of polyunsaturated fatty acids on voltage-gated ion channels. Front Physiol. 2017;8:43. https://doi.org/10.3389/fphys.2017.00043
- 75. Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: a systematic review of human intervention studies. Adv Nutr. 2020;11(4):864-77. https://doi.org/10.1093/advances/nmaa013
- 76. Singh J, Rajasekaran A, Negi AK, Pala NA, Panwar VP, Bussmann RW, et al. Potential of wild edible fruits for nutrition in indigenous communities of Northwest Himalaya, India. Ethnobotany Res Appl. 2023;25:9. https://doi.org/10.32859/era.25.9.1-15
- 77. Archana GN, Pradeesh S, Chinmayee MD, Mini I, Swapna TS. Diplazium esculentum: a wild nutrient-rich leafy vegetable from Western Ghats. In: Sabu A, Augustine A, editors. Prospects in bioscience: addressing the issues. India: Springer; 2012. p. 293-301. https://doi.org/10.1007/978-81-322-0810-5_35
- 78. Radha, Kumar M, Puri S, Pundir A, Bangar SP, Changan S, et al. Evaluation of nutritional, phytochemical and mineral composition of selected medicinal plants for therapeutic uses from cold desert of Western Himalaya. Plants. 2021;10(7):1429. https://doi.org/10.3390/plants10071429
- 79. Dash GK, Khadidi SKJ, Shamsuddin AF. Pharmacognostic studies on Diplazium esculentum (Retz.) Sw. Der Pharm Lett. 2017;9(3):113-20.
- 80. Roy S, Chaudhuri TK. A comprehensive review on the pharmacological properties of Diplazium esculentum, an edible fern. J Pharm Pharmacol Res. 2020;3:1-9.
- 81. Elango T, Jeyaraj A, Dayalan H, Arul S, Govindasamy R, Prathap K, et al. Influence of shading intensity on chlorophyll, carotenoid and metabolite biosynthesis to improve the quality of green tea: a review. Energy Nexus. 2023;12:100241. https://doi.org/10.1016/j.nexus.2023.100241
- 82. Zidorn C. Altitudinal variation of secondary metabolites in flowering heads of the Asteraceae: trends and causes. Phytochem Rev. 2010;9(2):197-203. https://doi.org/10.1007/s11101-009-9143-7
- 83. Baccouri B, Sieren T, Rajhi I, Willenberg I. Characterization of the fingerprint profile of bioactive constituents of extra virgin olive oils from the Tunisian Cap Bon Peninsula with regard to altitude. Eur Food Res Technol. 2023;249(2):497-509. https://doi.org/10.1007/s00217-022-04148-y
- 84. Zakraoui M, Hannachi H, Pasković I, Vidović N, Polić Pasković M, Palčić I, et al. Effect of geographical location on the phenolic and mineral composition of Chetoui olive leaves. Foods. 2023;12(13):2565. https://doi.org/10.3390/foods12132565
- 85. Jimoh FO, Adedapo AA, Afolayan AJ. Comparison of the nutritive value, antioxidant and antibacterial activities of Sonchus asper and Sonchus oleraceus. Rec Nat Prod. 2011;5(1):29-42.
- 86. Hegde AS, Gupta S, Kumari P, Joshi R, Srivatsan V. Wild edible flowers of Western Himalayas: nutritional characterization, UHPLC-QTOF-IMS-based phytochemical profiling, antioxidant properties and in vitro bioaccessibility of polyphenols. ACS Omega. 2023;8(43):40212-28. https://doi.org/10.1021/acsomega.3c03861
- 87. Kaundal R, Kumar S, Singh D, Kumar D. Underutilized edible Himalayan herb Viola canescens Wall.: chemical composition, antioxidant and antimicrobial activity against respiratory tract pathogens. Food Biosci. 2024;62:105201. https://doi.org/10.1016/j.fbio.2024.105201
- 88. Lattanzio V. Phenolic compounds: introduction. In: Ramawat KG, Mérillon JM, editors. Natural products. Berlin, Heidelberg: Springer; 2013. p. 1543-80. https://doi.org/10.1007/978-3-642-22144-6_57
- 89. Smith BL, Seawright AA, Ng JC. Ptaquiloside and fern-related carcinogenicity: a review. Food Chem Toxicol. 2017;108:1-12.
- 90. Hassan M, Mir TA, Jan M, Amjad MS, Aziz MA, Pieroni A, et al. Foraging for the future: traditional culinary uses of wild plants in the Western Himalayas, Kashmir Valley, India. J Ethnobiol Ethnomed. 2024;20(1):66. https://doi.org/10.1186/s13002-024-00707-7
Downloads
Download data is not yet available.