Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effects of selective insecticides on Zeugodacus cucurbitae (Diptera: Tephritidae) reared on bitter gourd under laboratory conditions

DOI
https://doi.org/10.14719/pst.11747
Submitted
11 September 2025
Published
14-01-2026

Abstract

Chemical control has traditionally served as the principal method for managing pests in cucurbit crops; however, the urgent need to mitigate environmental risks and ensure food safety has driven the exploration of sustainable alternatives. The present study was carried out during Kharif 2024 at the Entomology Laboratory, ICAR–Indian Institute of Vegetable Research, Varanasi, to evaluate the influence of insecticides from diverse chemical groups on the biology and morphometrics of the melon fruit fly, Zeugodacus cucurbitae. The test insecticides included chlorantraniliprole, cyantraniliprole, thiamethoxam, imidacloprid, indoxacarb and azadirachtin. Their effects were examined on developmental duration, adult longevity, oviposition period, fecundity and body dimensions. The results revealed that anthranilic diamides exerted the most pronounced impact. Chlorantraniliprole and cyantraniliprole markedly prolonged developmental time (female longevity of 37.23 and 33.76 days, respectively, versus 30.82 days in control) and azadirachtin, as well as cyantraniliprole, significantly suppressed fecundity (52.40 and 54.26 eggs compared with 81.40 in control). Among concentrations, imidacloprid at 16 ppm (45.33 eggs) and azadirachtin at 16 ppm (50.48 eggs) per female adult caused the greatest reduction in fecundity, whereas indoxacarb at 4 ppm showed minimal effect (79.78 eggs). Morphometric traits were similarly affected, with chlorantraniliprole reducing larval length (1st instar 1.49 mm and 3rd instar 9.15 mm against 1.85 mm and 10.05 mm in control) and adult female width (13.55-14.41 mm vs 15.79 mm in control). Indoxacarb responses closely resembled control, while azadirachtin produced intermediate suppression. Overall, the findings indicate that anthranilic diamides, particularly chlorantraniliprole and cyantraniliprole, along with the botanically derived azadirachtin, are promising candidates for disrupting the growth and reproduction of Z. cucurbitae. When used in rotation or integrated with botanicals and ecological strategies, these insecticides can form a sustainable foundation for melon fruit fly management.

References

  1. 1. Jang EB, Carvalho LAFN, Chen CC, Siderhurst MS. Cucumber lure trapping of Zeugodacus cucurbitae (Diptera: Tephritidae) in Hawaii and Taiwan: longevity and nontarget captures. J Econ Entomol. 2017;110(1):201-07. https://doi.org/10.1093/jee/tow268
  2. 2. CABI. Zeugodacus cucurbitae datasheet. Wallingford: CABI; 2023.
  3. 3. EPPO. Zeugodacus cucurbitae (Dacus cucurbitae) datasheet. Paris: European and Mediterranean Plant Protection Organization; 2024.
  4. 4. Dhillon MK, Singh R, Naresh JS, Sharma NK. Influence of physico-chemical traits of bitter gourd (Momordica charantia L.) on larval density and resistance to melon fruit fly, Bactrocera cucurbitae (Coquillett). J Appl Entomol. 2005;129(7):393-99. https://doi.org/10.1111/j.1439-0418.2005.00911.x
  5. 5. Hadapad AB, Shettigar SK, Hire RS. Bacterial communities in the gut of wild and mass-reared Zeugodacus cucurbitae and Bactrocera dorsalis revealed by metagenomic sequencing. BMC Microbiol. 2019;19(Suppl 1):282. https://doi.org/10.1186/s12866-019-1647-8
  6. 6. Kayattukandy Balan R, George S, Pines G, Li D, Gunawardana D, Puthigae S. Species-specific real-time PCR assay for rapid identification of Zeugodacus cucurbitae Coquillet (Diptera: Tephritidae) from other closely related fruit fly species. Insects. 2025;16(8):818. https://doi.org/10.3390/insects16080818
  7. 7. Ladania MS. Physiological disorders and their management. In: Citrus fruit: biology, technology and evaluation. Cambridge: Academic Press; 2008. p. 451-63. https://doi.org/10.1016/B978-012374130-1.50019-X
  8. 8. Sharma DK, Manzoor U, Kumar R. Spatiotemporal damage distribution of melon fly, Bactrocera, Zeugodacus cucurbitae (Diptera: Tephritidae) on different stages of flowers and fruits in cucumber. Int J Entomol Res. 2025;10(1):72-75.
  9. 9. Bhardwaj N, Singh SB, Patidar R, Jatav PK. Field screening of cucumber (Cucumis sativus L.) cultivars against fruit fly (Bactrocera cucurbitae Coq.). Pharma Innov J. 2022;11(12):1711-13.
  10. 10. Krishna Kumar NK, Verghese A, Shivakumara B, Krishnamoorthy PN, Ranganath HR. Relative incidence of Bactrocera cucurbitae (Coquillett) and Dacus ciliatus Loew on cucurbitaceous vegetables. In: Fruit Flies of Economic Importance: From Basic to Applied Knowledge. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance 2006. Salvador, Brazil; 2006. p. 249-53.
  11. 11. Dhillon MK, Singh R, Naresh JS, Sharma HC. The melon fruit fly Bactrocera cucurbitae: a review of its biology and management. J Insect Sci. 2005;5(1):40. https://doi.org/10.1093/jis/5.1.40
  12. 12. Nithya K, Kavitha Z, Shanthi M, Vijayaraghavan C, Swarnalatha K. Management of melon fruit fly Zeugodacus cucurbitae (Coquillett) with improved protein bait formulation. Uttar Pradesh J Zool. 2025;46(4):55-64. https://doi.org/10.56557/upjoz/2025/v46i44804
  13. 13. Abro ZA, Baloch N, Khuhro NH, Qazi WA, Saeed NA. Population densities of melon fruit fly Bactrocera cucurbitae (Coquillett) in vegetable agro-ecosystem in District Hyderabad, Sindh, Pakistan. Sarhad J Agric. 2017;33(2):331-37. https://doi.org/10.17582/journal.sja/2017/33.2.331.337
  14. 14. Ekesi S, De Meyer M, Mohamed SA, Virgilio M, Borgemeister C. Taxonomy, ecology and management of native and exotic fruit fly species in Africa. Annu Rev Entomol. 2016;61:219-38. https://doi.org/10.1146/annurev-ento-010715-023603
  15. 15. De Meyer M, Delatte H, Mwatawala M, Quilici S, Vayssières JF, Virgilio M. A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) in Africa, with a list of species included in Zeugodacus. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J, editors. Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys. 2015;540:539-57. https://doi.org/10.3897/zookeys.540.9672
  16. 16. Toyzhigitova B, Yskak S, Łozowicka B, Kaczyński P, Dinasilov A, Zhunisbay R, et al. Biological and chemical protection of melon crops against Myiopardalis pardalina Bigot. J Plant Dis Prot. 2019;126(4):359-66. https://doi.org/10.1007/s41348-019-00231-x
  17. 17. EPPO. PM 7/115 (1) Zeugodacus cucurbitae. Bull OEPP EPPO Bull. 2013;43(3):471-81. https://doi.org/10.1111/epp.12077
  18. 18. Leblanc L. The dacine fruit flies (Diptera: Tephritidae: Dacini) of Oceania. Insecta Mundi. 2022;(948):1-167.
  19. 19. Pradhan S, Karuppannasamy A, Sujatha P, Nagaraja B, Bynakal S, Riegler M, et al. Comparative analyses of age-stage, two-sex life table and host preference of Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) on different hosts. Anim Biol. 2023;73(4):341-61.
  20. 20. Radhika SDB, Sonkamble MM, Udavant RN. Morphometric study of melon fruit fly (Bactrocera cucurbitae Coq.) on host bitter gourd. Pharma Innov J. 2023;12(4):702-06.
  21. 21. Tamilselvi C, Vijayashanthi VA, Sathish G, Yogameenakshi P, Preethi TL, Sivagamy K, et al. Integrated pest management strategies for fruitfly (Bactrocera cucurbitae) in bitter gourd. Uttar Pradesh J Zool. 2024;45(6):89-93. https://doi.org/10.56557/upjoz/2024/v45i63953
  22. 22. Hannig GT, Ziegler M, Marçon PG. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag Sci. 2009;65(9):969-74.
  23. https://doi.org/10.1002/ps.1781
  24. 23. Kadala A, Charreton M, Charnet P, Collet C. Honey bees long-lasting locomotor deficits after exposure to the diamide chlorantraniliprole are accompanied by brain and muscular calcium channels alterations. Sci Rep. 2019;9:2153. https://doi.org/10.1038/s41598-019-39193-3
  25. 24. Ahmed F, Amin MR, Rahman MM, Alam MZ, Afroz M, Suh SJ. Toxicity of chemical insecticides and neem oil on cucurbit fruit fly Bactrocera cucurbitae. Agric Sci Dig. 2024;44(3):495-99.
  26. 25. Selby TP, Lahm GP, Stevenson TM, Hughes KA, Cordova D, Annan IB, et al. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg Med Chem Lett. 2013;23(23):6341-45. https://doi.org/10.1016/j.bmcl.2013.09.076
  27. 26. Thany SH. Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/giant interneuron synapses. Neuropharma. 2011;60(4):587-92. https://doi.org/10.1016/j.neuropharm.2010.12.008
  28. 27. Buckingham S, Lapied B, Corronc H, Sattelle F. Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol. 1997;200(Pt 21):2685-92. https://doi.org/10.1242/jeb.200.21.2685
  29. 28. Lapied B, Grolleau F, Sattelle DB. Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels. Br J Pharmacol. 2001;132(2):587-95. https://doi.org/10.1038/sj.bjp.0703853
  30. 29. Samalo AP, Beshra RC, Satpathy CR. Studies on comparative biology of the melon fruitfly, Dacus cucurbitae Coq. Orissa J Agric Res. 1991;4(1-2):1-5.
  31. 30. Batool N, Abubakar M, Noureldeen A, Naqqash MN, Alghamdi A, Al Dhafar ZM, et al. Toxicity and sublethal effect of chlorantraniliprole on multiple generations of Aedes aegypti L. (Diptera: Culicidae). Insects. 2024;15(11):851. https://doi.org/10.3390/insects15110851
  32. 31. He H, Peng M, Ru S, Hou Z, Li J. A suitable organic fertilizer substitution ratio could improve maize yield and soil fertility with low pollution risk. Front Plant Sci. 2022;13:988663. https://doi.org/10.3389/fpls.2022.988663
  33. 32. Gardner CA, Bax PL, Bailey DJ. Response of corn hybrids to nitrogen fertilizer. J Prod Agric. 1990;3(1):39-43. https://doi.org/10.2134/jpa1990.0039
  34. 33. Zhao X, Wang S, Wen T, et al. On correlation between canopy vegetation and growth indexes of maize varieties with different nitrogen efficiencies. Open Life Sci. 2023;18(1):20220566. https://doi.org/10.1515/biol-2022-0566
  35. 34. Ray DD, Bera S, Ali A, et al. Initial effect of conservation agriculture on the growth and yield attributes of maize and their correlation behavior with yield.
  36. 35. Timilsina D, Marahatta S, Amgain LP. Tillage and leaf colour chart-guided nitrogen management: Key to growth and yield improvement of winter maize in Chitwan, Nepal. Arch Agric Environ Sci. 2024;9(4):805-11. https://doi.org/10.26832/24566632.2024.0904025
  37. 36. Hammad HM, Chawla MS, Jawad R. Evaluating the impact of nitrogen application on growth and productivity of maize under control conditions. Front Plant Sci. 2022;13:885479. https://doi.org/10.3389/fpls.2022.885479
  38. 37. Ige SA, Bello O, Abolusoro S, Aremu C. Comparative response of some tropical maize hybrid and their parental varieties to low and high nitrogen regime. Heliyon. 2021;7(9). https://doi.org/10.1016/j.heliyon.2021.e07909
  39. 38. Krishna TG, Sairam M, Raghava VC, Maitra S. Unraveling the advantages of site-specific nutrient management in maize (Zea mays) for enhancing the growth and productivity under varied plant populations in the hot and moist sub-humid region of Odisha. Plant Sci Today. 2024;11:432-40.
  40. 39. Aberra Y. TIGRAY: Bibliography and bibliometry 1996-2021 [Internet]. UMD Media; 2022 [cited 2025 Dec 13].
  41. 40. Chen Z, Hou Y, Yan J, et al. Comprehensive responses of root system architecture and anatomy to nitrogen stress in maize (Zea mays) genotypes with contrasting nitrogen efficiency. Agronomy. 2025;15(9):2083. https://doi.org/10.3390/agronomy15092083
  42. 41. Sharifi S, Shi S, Dong X, Obaid H, He X, Gu X. Variations in nitrogen accumulation and use efficiency in maize differentiate with nitrogen and phosphorus rates and contrasting fertilizer placement methodologies. Plants (Basel). 2023;12(22):3870. https://doi.org/10.3390/plants12223870
  43. 42. Sidhu AS, Shard D, Aulakh CS, Bhullar SS, Singh S. Evaluating the sustainability of natural, organic and conventional farming practices: a comparative study in maize-wheat cropping system in North-west India. Environ Dev Sustain. 2025;1-28. https://doi.org/10.1007/s10668-025-06569-7
  44. 43. Nshakira-Rukundo E, Tabe-Ojong MP Jr, Gebrekidan BH, et al. Adoption and impacts of agricultural technologies and sustainable natural resource management practices in fragile and conflict affected settings: a review and meta-analysis.
  45. 44. Salve DA, Maydup ML, Salazar GA, Tambussi EA, Antonietta M. Canopy development, leaf traits and yield in high-altitude Andean maize under contrasting plant densities in Argentina. Exp Agric. 2023;59:e22. https://doi.org/10.1017/S0014479723000194
  46. 45. Ibraheem F, El-Ghareeb E. Growth and physiological responses of maize inbreds and their related hybrids under sufficient and deficient soil nitrogen. Catrina Int J Environ Sci. 2020;22(1):35-47. https://doi.org/10.21608/cat.2020.122753
  47. 46. Szabó A, Mousavi SM, Bojtor C. Analysis of nutrient-specific response of maize hybrids in relation to leaf area index (LAI) and remote sensing. Plants (Basel). 2022;11(9):1197. https://doi.org/10.3390/plants11091197
  48. 47. Silva L, Conceição LA, Lidon FC, Maçãs B. Remote monitoring of crop nitrogen nutrition to adjust crop models: a review. Agriculture (Basel). 2023;13(4):835. https://doi.org/10.3390/agriculture13040835
  49. 48. Wiley P, Hoboken P, Jun P, PT J. SO Int J Climat. 1957;268(Z9):274.
  50. 49. Khan MU, Alam MZ, Fatima S. Evaluation of maize hybrids for yield and maturity traits. J Agric Sci Technol. 2019;10(1):100-15. https://doi.org/10.17582/journal.sja/2019/35.1.7.12
  51. 50. Makumbi D, Kosgei T, Mageto EK. Genetic analysis of ear, husk and tassel traits in tropical maize under diverse environments. Front Plant Sci. 2025;16:1618054. https://doi.org/10.3389/fpls.2025.1618054
  52. 51. Bhagat RM, Rana RS, Kalia V. Productivity of cucumber Cucumis sativus as influenced by organic manures and fertilizers. Haryana J Hortic Sci. 2000;29(1-2):73-75.
  53. 52. Rahman MM, Alam MS, Rahman MA. Growth and yield of bitter gourd Momordica charantia in response to organic and inorganic fertilizers. Bangladesh J Agric Res. 2013;38(1):55-63.
  54. 53. Haldhar SM, Singh RS, Bhargava R. Effect of organic manures and biofertilizers on growth and yield of bitter gourd Momordica charantia. Indian J Agric Sci. 2015;85(1):133-36.
  55. 54. Kumar S, Kumar A, Sharma S. Integrated nutrient management in cucumber Cucumis sativus for higher productivity. Veg Sci. 2017;44(1):116-20.
  56. 55. Sarker S, Rahman M, Islam N, et al. Response of bitter gourd Momordica charantia to different levels of nitrogen. Int J Sustain Crop Prod. 2012;7(2):15-18.
  57. 56. Pandey R, Singh P, Kumar V. Fertilizer management for higher yield in cucumber Cucumis sativus. J Pharmacogn Phytochem. 2018;7(2):2905-08.
  58. 57. Sharma D, Singh G, Kumar S, et al. Impact of nitrogen fertilization on growth and yield of bitter gourd Momordica charantia. Agric Sci Dig. 2016;36(3):181-84.
  59. 58. Rao V, Reddy M, Kumar R. NPK levels influencing growth and yield of cucumber Cucumis sativus. J Hortic Sci. 2014;9(2):145-49.
  60. 59. Nath P, Thakur R, Singh A. Fertigation effects on growth and yield of bitter gourd Momordica charantia. J Pharmacogn Phytochem. 2019;8(3):1133-37.
  61. 60. Devi K, Singh J, Meena S. Nutrient management in cucumber Cucumis sativus under protected cultivation. J Agric Eng. 2015;52(4):56-61.
  62. 61. Kumar R, Singh P, Meena V. Influence of organic and inorganic fertilizers on growth and yield of cucumber Cucumis sativus. Veg Sci. 2016;43(2):200-04.
  63. 62. Singh A, Verma S, Chauhan P. Response of bitter gourd Momordica charantia to nitrogen levels and biofertilizers. Indian J Hortic. 2017;74(3):323-29.
  64. 63. Patel N, Patel R, Parmar R. Effect of integrated nutrient management on growth and yield of cucumber Cucumis sativus. Int J Curr Microbiol Appl Sci. 2019;8(5):1126-32.
  65. 64. Sharma K, Singh R, Kumar M. Optimizing nitrogen levels for bitter gourd Momordica charantia under subtropical conditions. Indian J Agric Sci. 2018;88(7):1094-98.
  66. 65. Gupta S, Kumar R, Joshi S. Effect of organic manures on growth, yield and quality of cucumber Cucumis sativus. Int J Agric Environ Biotechnol. 2017;10(2):171-75.
  67. 66. Yadav R, Singh P, Meena L. Integrated nutrient management in bitter gourd Momordica charantia for enhanced productivity. J Hortic Sci. 2019;14(2):78-83.
  68. 67. Verma S, Sharma A, Chauhan P. Response of cucumber Cucumis sativus to different levels of NPK under polyhouse conditions. Indian J Hortic. 2018;75(1):95-100.
  69. 68. Singh R, Mehta A, Kumar S. Effect of organic and inorganic nutrient sources on growth and yield of bitter gourd Momordica charantia. Veg Sci. 2017;44(3):321-25.
  70. 69. Kumar V, Sharma D, Rathi P. Effect of nitrogen and phosphorus levels on cucumber Cucumis sativus productivity. Haryana J Hortic Sci. 2016;45(1-2):12-17.
  71. 70. Meena R, Singh S, Yadav P. Influence of integrated nutrient management on growth and yield of bitter gourd Momordica charantia. Indian J Agric Sci. 2017;87(9):1153-57.
  72. 71. Rathore S, Singh P, Sharma R. Effect of nitrogen and biofertilizers on growth, yield and quality of cucumber Cucumis sativus. Int J Curr Microbiol Appl Sci. 2018;7(12):1234-40.
  73. 72. Joshi A, Kumar R, Sharma P. Response of bitter gourd Momordica charantia to varying levels of nitrogen and phosphorus. Indian J Hortic. 2019;76(3):456-61.
  74. 73. Chauhan P, Verma S, Mehta A. Growth and yield response of cucumber Cucumis sativus to integrated nutrient management. Veg Sci. 2018;45(1):87-92.
  75. 74. Singh K, Yadav R, Kumar V. Effect of organic manures and NPK levels on bitter gourd Momordica charantia. Indian J Agric Sci. 2016;86(8):1015-20. https://doi.org/10.56093/ijas.v86i7.59835
  76. 75. Sharma R, Meena S, Rathore D. Influence of different nutrient management practices on growth and yield of cucumber Cucumis sativus. Int J Curr Microbiol Appl Sci. 2017;6(7):2405-10.
  77. 76. Verma P, Singh A, Kumar R. Integrated nutrient management for enhanced productivity of bitter gourd Momordica charantia. Indian J Hortic. 2018;75(4):598-604.
  78. 77. Patel R, Yadav S, Mehta V. Response of cucumber Cucumis sativus to combined application of organic manures and chemical fertilizers. Veg Sci. 2019;46(2):145-50.
  79. 78. Sharma A, Singh P, Chauhan R. Growth, yield and quality of bitter gourd Momordica charantia as influenced by nitrogen levels. Indian J Agric Sci. 2018;88(10):1642-46.
  80. 79. Meena L, Verma S, Sharma K. Effect of nutrient management on cucumber Cucumis sativus under subtropical conditions. Haryana J Hortic Sci. 2017;46(1-2):35-39.
  81. 80. Kumar P, Singh R, Mehta A. Influence of integrated nutrient management on growth and yield of bitter gourd Momordica charantia. Indian J Hortic. 2019;76(2):245-50.
  82. 81. Yadav P, Kumar S, Singh K. Effect of nitrogen and biofertilizers on cucumber Cucumis sativus productivity. Veg Sci. 2018;45(3):211-16.

Downloads

Download data is not yet available.