Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Modern biotechnological approaches to enhance plant responses to abiotic stresses

DOI
https://doi.org/10.14719/pst.11797
Submitted
16 September 2025
Published
04-12-2025

Abstract

Abiotic and biotic stresses are major global challenges that reduce plant productivity, quality and sustainability worldwide. These stresses threaten global food security as the human population continues to grow. These stresses threaten global food supply in the current era of increasing population. Stresses negatively affect the normal growth and development of plants. They are mainly divided into 2 groups: abiotic and biotic stress. In particular, abiotic stresses lead to impaired growth and development of plants, disruption of the photosynthesis process and water regime. High temperatures lead to protein denaturation and decreased enzyme activity, while low temperatures lead to membrane damage. Abiotic stressors are one of the primary elements influencing the growth and production of major agricultural income crops. Environmental elements that cause physiological and biochemical pain in plants include salinity, drought, low temperature, heavy metals and chemical pollution. This article examines biotechnological approaches that use modern genetic engineering technologies such as RNA interference (RNAi) and CRISPR/Cas9 systems to improve plant resilience to abiotic stressors. RNAi plays a crucial role in activating plant
defence mechanisms by modulating the expression of stress-responsive genes, whereas CRISPR/Cas9 technology allows for the creation of new, stress-tolerant types by introducing precise alterations in the genome. These biotechnologies have significant potential to develop stable, high-yielding and stress-resilient crops. Overall, this review summarizes recent advances in RNAi and CRISPR/Cas9 technologies for improving plant resilience to abiotic stresses.

References

  1. 1. Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006.11(1):15-9. http://doi:10.1016/j.tplants.2005.11.002
  2. 2. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Hortic. 2021;7(3):50. https://doi.org/10.3390/horticulturae7030050
  3. 3. Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24. http://doi.org/10.1016/j.cell.2016.08.029
  4. 4. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70:667–97. https://doi.org/10.1146/annurev-arplant-050718-100049
  5. 5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829
  6. 6. Dabravolski SA, Isayenkov SV. The physiological and molecular mechanisms of silicon action in salt stress amelioration. Plants. 2024;13(4):525. https://doi.org/10.3390/plants13040525
  7. 7. Khan AA, Wang YF, Akbar R, Alhoqail WA. Mechanistic insights and future perspectives of drought stress management in staple crops. Front Plant Sci. 2025;16:1547452. https://doi.org/10.3389/fpls.2025.1547452
  8. 8. Hao S, Wang Y, Yan Y, Liu Y, Wang J, Chen S. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae. 2021;7(6):132. https://doi.org/10.3390/horticulturae7060132
  9. 9. Wang Q, Guan C, Wang P, Ma Q, Bao AK, Zhang JL, et al. The effect of AtHKT1;1 or AtSOS1 mutation on the expressions of Na+ or K+ transporter genes and ion homeostasis in Arabidopsis thaliana under salt stress. Int J Mol Sci. 2019;20(5):1085. https://doi.org/10.3390/ijms20051085
  10. 10. Paul EV, Jian-Kang Z. New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol. 2007;10:447–52. https://doi.org/10.1016/j.pbi.2007.08.004
  11. 11. Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci. 2015;6:1077. https://doi.org/10.3389/fpls.2015.01077
  12. 12. Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32(1):40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006
  13. 13. Hong-Bo S, Li-Ye C, Ming-An S, Shi-Qing L, Ji-Cheng Y. Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol Adv. 2008;26(6):503–10. https://doi.org/10.1016/j.biotechadv.2008.04.004
  14. 14. Wilkins KA, Matthus E, Swarbreck SM, Davies JM. Calcium-mediated abiotic stress signaling in roots. Front Plant Sci. 2016;7:1296. https://doi.org/10.3389/fpls.2016.01296
  15. 15. Almadanim MC, Gonçalves NM, Rosa MTG, Alexandre BM, Cordeiro AM, Rodrigues M, et al. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and posttranslational modifications. BBA. 2018;1865(2):231–46. https://doi.org/10.1016/j.bbamcr.2017.10.010
  16. 16. Li J, Li G, Haiyang W, Deng XW. Phytochrome signaling mechanisms. The Arabidopsis Book. 2011;(9):e0148. https://doi.org/10.1199/tab.0148
  17. 17. Lim J, Park JH, Jung S, Hwang D, Nam HG, Hong S. Antagonistic roles of PhyA and PhyB in far-red light-dependent leaf senescence in Arabidopsis thaliana. Plant Cell Physiol. 2018;59(9):1753–64. https://doi.org/10.1093/pcp/pcy153
  18. 18. Sineshchekov V, Shor E, Koppel L. The phosphatase/kinase balance affects phytochrome A and its native pools, phyA′ and phyA″, in etiolated maize roots: evidence from the induction of phyA′ destruction by a protein phosphatase inhibitor sodium fluoride. Photochem Photobiol Sci. 2021;20:1429–37. https://doi.org/10.1007/s43630-021-00110-1
  19. 19. Roeber VM, Schmülling T, Cortleven A. The photoperiod: handling and causing stress in plants. Front Plant Sci. 2022;12:781988. https://doi.org/10.3389/fpls.2021.781988
  20. 20. Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, et al. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci. 2014;111(28):10037–44. https://doi.org/10.1073/pnas.1409795111
  21. 21. Gururani MA. Photobiotechnology for abiotic stress resilient crops: recent advances and prospects. Heliyon. 2023;9(9):e20158. https://doi.org/10.1016/j.heliyon.2023.e20158
  22. 22. Legris M, Ince YÇ, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun. 2019;10:5219. https://doi.org/10.1038/s41467-019-13045-0
  23. 23. Qiu X, Sun G, Liu F, Hu W. Functions of plant phytochrome signaling pathways in adaptation to diverse stresses. Int J Mol Sci. 2023;24:13201. https://doi.org/10.3390/ijms241713201ijms241713201
  24. 24. Ahn G, Jung IJ, Cha JY, Jeong SY, Shin GI, Ji MG, et al. Phytochrome B positively regulates red light-mediated er stress response in Arabidopsis. Front Plant Sci. 2022;13:846294. https://doi.org/10.3389/fpls.2022.846294
  25. 25. Halliday KJ, Whitelam GC. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol. 2003;131(4):1913–20. https://doi.org/10.1104/pp.102.018135
  26. 26. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):86–96. https://doi.org/10.1016/j.bbagrm.2011.08.004
  27. 27. Mao X, Chen S, Li A, Zhai C, Jing R. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PloS One. 2014;9(1):e84359. https://doi.org/10.1371/journal.pone.0084359
  28. 28. Banerjee A, Roychoudhury A. WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J. 2015;807560. https://doi.org/10.1155/2015/807560
  29. 29. Li N, Du C, Ma B, Gao Z, Wu Z, Zheng L, et al. Functional analysis of ion transport properties and salt tolerance mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna. Plant Cell Physiol. 2019;60(1):85–106. https://doi.org/10.1093/pcp/pcy187
  30. 30. Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell. 2002;14(2):465–77. https://doi.org/10.1105/tpc.010371
  31. 31. Chen LH, Zhang B, Xu ZQ. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res. 2008;17(1):121–32. https://doi.org/10.1007/s11248-007-9085-z
  32. 32. Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008;9:118. https://doi.org/10.1186/1471-2164-9-118
  33. 33. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, et al. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 2009;150(4):1972–80. https://doi.org/10.1104/pp.109.135327
  34. 34. Li T, Huang Y, Khadr A, Wang Y, Xu Z, Xiong A. DcDREB1A, a DREBbinding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environ Exp Bot. 2020;169:103896. https://doi.org/10.1016/j.envexpbot.2019.103896
  35. 35. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006;18(5):1292–309. https://doi.org/10.1105/tpc.105.035881
  36. 36. Moon SJ, Min MK, Kim JA, Kim DY, Yoon IS, Kwon TR, et al. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Front Plant Sci. 2019;10:297. https://doi.org/10.3389/fpls.2019.00297
  37. 37. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett. 2008;30(12):2191–8. https://doi.org/10.1007/s10529-008-9811-5
  38. 38. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751–63. https://doi.org/10.1046/j.1365-313x.2003.01661.x
  39. 39. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50(1):54–69. https://doi.org/10.1111/j.1365-313x.2007.03034.x
  40. 40. Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. 2013;9(9):e1003790. https://doi.org/10.1371/journal.pgen.1003790
  41. 41. Wang H, Zhu Y, Yuan P, Song S, Dong T, Chen P, et al. Response of wheat DREB transcription factor to osmotic stress based on DNA methylation. Int J Mol. 2021;22:7670. https://doi.org/10.3390/ijms22147670
  42. 42. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015;81(3):505–18. https://doi.org/10.1111/tpj.12746
  43. 43. Nguyen QH, Vu LTK, Nguyen LTN, Pham NTT, Nguyen YTH, Le SV. et al. Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep. 2019;9:19663. https://doi.org/10.1038/s41598-019-55895-0
  44. 44. Zhao T, Xia H, Liu J, Ma F. The gene family of dehydration responsive element-binding transcription factors in grape (Vitis vinifera): genome-wide identification and analysis, expression profiles and involvement in abiotic stress resistance. Mol Biol Rep. 2014;41(3):1577–90. https://doi.org/10.1007/s11033-013-3004-6
  45. 45. Hou L, Wu Q, Zhu X, Li X, Fan X, Hui M, et al. Transcription factor VvDREB2A from Vitis vinifera improves cold tolerance. Int J Mol Sci. 2023;24:9381. https://doi.org/10.3390/ijms24119381
  46. 46. Vazquez-Hernandez M, Romero I, Escribano MI, Merodio C, Sanchez- Ballesta MT. Deciphering the role of CBF/DREB transcription factors and dehydrins in maintaining the quality of table grapes cv. Autumn Royal treated with high CO2 levels and stored at 0°C. Front Plant Sci. 2017;8:1591. https://doi.org/10.3389/fpls.2017.01591
  47. 47. Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, et al. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol. 2013;54(3):803–17. https://doi.org/10.1007/s12033-012-9628-2
  48. 48. Chiab N, Kammoun M, Charfeddine S, Bouaziz D, Gouider M, Gargouri Bouzid R. Impact of the overexpression of StDREB1 transcription factor on growth parameters, yields and chemical composition of tubers from greenhouse and field grown potato plants. J Plant Res. 2021;134:249–59. https://doi.org/10.1007/s10265-020-01245-5
  49. 49. Mushtaq N, Munir F, Gul A, Amir R, Zafar Paracha R. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. Peer J. 2021;9:e11647. https://doi.org/10.7717/peerj.11647
  50. 50. Maqsood H, Munir F, Amir R, Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cisregulatory elements, protein homology and protein interaction network of DREB gene family in Solanum lycopersicum. Front Plant Sci. 2022;13:1031679. https://doi.org/10.3389/fpls.2022.1031679
  51. 51. Mao L, Deng M, Jiang S, Zhu H, Yang Z, Yue Y, et al. Characterization of the DREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Front Plant Sci. 2020;11:554520. https://doi.org/10.3389/fpls.2020.554520
  52. 52. Singh S, Koyama H, Bhati KK, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J Plant Res. 2021;134:475–95. https://doi.org/10.1007/s10265-021-01270-y
  53. 53. Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, et al. Genomewide identification and analysis of NAC transcription factor family in two diploid wild relatives of cultivated sweet potato uncovers potential NAC genes related to drought tolerance. Front Genet. 2021;12:744220. https://doi.org/10.3389/fgene.021.744220
  54. 54. Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice. 2019;12:76. https://doi.org/10.1186/s12284-019-0334-6
  55. 55. Zhang X, Long Y, Chen X, Zhang B, Xin Y, Li L, et al. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biol. 2021;21:546. https://doi.org/10.1186/s12870-021-03333-7
  56. 56. Mao H, Yu L, Han R, Li Z, Liu H. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem. 2016;105:55–66. https://doi.org/10.1016/j.plaphy.2016.04.018
  57. 57. Xu Z, Gongbuzhaxi, Wang C, Xue F, Zhang H, Ji W. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem. 2015;96:356–63. https://doi.org/10.1016/j.plaphy.2015.08.013
  58. 58. Hoang XLT, Chuong NN, Hoa TTK, Doan H, Van PHP, Trang LDM, et al. The drought-mediated soybean GmNAC085 functions as a positive regulator of plant response to salinity. Int J Mol Sci. 2021;22(16):8986. https://doi.org/10.3390/ijms22168986
  59. 59. Ju Y, Yue X, Min Z, Wang X, Fang Y, Zhang J. VvNAC17, a novel stress responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem. 2020;146:98–111. https://doi.org/10.1016/j.plaphy.2019.11.002
  60. 60. Wang Q, Guo C, Li Z, Sun J, Deng Z, Wen L, et al. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis. Int J Mol Sci. 2021;22(5):2568. https://doi.org/10.3390/ijms22052568
  61. 61. Jing L, Li J, Song Y, Zhang J, Chen Q, Han Q. Characterization of a potential ripening regulator, SlNAC3, from Solanum lycopersicum. Open Life Sci. 2018;13(1):518–26. https://doi.org/10.1515/biol-2018-0062
  62. 62. Jiang Y, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. 2009;69(1-2):91–105. https://doi.org/10.1007/s11103-008-9408-3
  63. 63. Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice. 2018;11(1):5. https://doi.org/10.1186/s12284-018-0199-0
  64. 64. Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS, et al. The maize WRKY40 transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci. 2018;19(9):2580. https://doi.org/10.3390/ijms19092580
  65. 65. He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, et al. Drought responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016;16:116. https://doi.org/10.1186/s12870-016-0806-4
  66. 66. Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci. 2018;19(12):4087. https://doi.org/10.3390/ijms19124087
  67. 67. Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, et al. Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci. 2022;23(21):13418. https://doi.org/10.3390/ijms232113418
  68. 68. Zhang C, Wang D, Yang C, Kong N, Shi Z, Zhao P, et al. Genome-wide identification of the potato Solanum tuberosum WRKY transcription factor family. PloS One. 2017;12(7):e0181573. https://doi.org/10.1371/journal.pone.0181573
  69. 69. Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci. 2017;8:1343. https://doi.org/10.3389/fpls.2017.01343
  70. 70. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217-39. https://doi.org/10.1146/annurev-biophys-083012-130404
  71. 71. Willow J, Smagghe G. RNAi applications toward environmentally sustainable food security. Curr Opin Environ Sci Health. 2025;45:100612. https://doi.org/10.1016/j.coesh.2025.100612
  72. 72. Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed H, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep. 2022;49:10975-93. https://doi.org/10.1007/s11033-022-07871-7
  73. 73. Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. Front Plant Sci. 2022;13:965745. https://doi.org/10.3389/fpls.2022.965745
  74. 74. Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, et al. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17(8):1482-500. https://doi.org/10.1111/pbi.13116
  75. 75. Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav. 2014;9(4):e28700. https://doi.org/10.4161/psb.28700
  76. 76. El Mamoun I, Bouzroud S, Zouine M, Smouni A. The knockdown of auxin response factor 2 confers enhanced tolerance to salt and drought stresses in tomato (Solanum lycopersicum L.). Plants (Basel). 2023;12(15):2804. https://doi.org/10.3390/plants12152804
  77. 77. Chen H, Li Z, Xiong L. A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett. 2012;586:1742-7. https://doi.org/10.1016/j.febslet.2012.05.013
  78. 78. Ahmad M. Genomics and transcriptomics to protect rice (Oryza sativa L.) from abiotic stressors: pathways to achieving zero hunger. Front Plant Sci. 2022;13:1002596. https://doi.org/10.3389/fpls.2022.1002596
  79. 79. Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, et al. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize (Zea mays L.). Front Plant Sci. 2022;13:932667. https://doi.org/10.3389/fpls.2022.932667
  80. 80. Lei Z, Zhang X, Wang M, Mao J, Hu X, Lin Y, et al. Silencing of miR169a improves drought stress by enhancing vascular architecture, ROS scavenging and photosynthesis of Solanum tuberosum L. Front Plant Sci. 2025;16:1553135. https://doi.org/10.3389/fpls.2025.1553135
  81. 81. Sun X, Fan G, Su L, Wang W, Liang Z, Li S, et al. Identification of cold inducible microRNAs in grapevine. Front Plant Sci. 2015;6:595. https://doi.org/10.3389/fpls.2015.00595
  82. 82. Li L, Han C, Yang J, Tian Z, Jiang R, Yang F, et al. Comprehensive transcriptome analysis of responses during cold stress in wheat (Triticum aestivum L.). Genes. 2023;14(4):844. https://doi.org/10.3390/genes14040844
  83. 83. Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, et al. The effect of low temperature stress on the leaves and microRNA expression of potato seedlings. Front Ecol Evol. 2021;9:727081. https://doi.org/10.3389/fevo.2021.727081
  84. 84. Erdoğan İ, Cevher-Keskin B, Bilir Ö, Hong Y, Tör M. Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance. Biology. 2023;12:1037. https://doi.org/10.3390/biology12071037
  85. 85. Li P, Li X, Jiang M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Mol Biol Rep. 2021;48:5821-32. https://doi.org/10.1007/s11033-021-06541-4
  86. 86. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed. 2019;39:47. https://doi.org/10.1007/s11032-019-0954-y
  87. 87. Qu L, Huang X, Su X, Zhu G, Li Z, Lin J, et al. Potato: from functional genomics to genetic improvement. Mol Hortic. 2024;4:34. https://doi.org/10.1186/s43897-024-00105-3
  88. 88. Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, et al. CRISPR/Cas9-induced mutagenesis of semi-rolled leaf 1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy. 2019;9(11):728. https://doi.org/10.3390/agronomy9110728
  89. 89. Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent advances for drought stress tolerance in maize (Zea mays L.): present status and future prospects. Front Plant Sci. 2022;13:872566. https://doi.org/10.3389/fpls.2022.872566
  90. 90. Zhong X, Hong W, Shu Y, Li J, Liu L, Chen X, et al. CRISPR/Cas9 mediated gene-editing of GmHdz4 transcription factor enhances drought tolerance in soybean (Glycine max [L.] Merr.). Front Plant Sci. 2022;13:988505. https://doi.org/10.3389/fpls.2022.988505
  91. 91. Zeng Y, Wen J, Zhao W, Wang Q, Huang W. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3 and OsMYB30 with the CRISPR-Cas9 system. Front Plant Sci. 2020;10:1663. https://doi.org/10.3389/fpls.2019.01663
  92. 92. Massa GA, Décima Oneto CA, González MN, Poulsen Hornum A, Arizmendi A, Sucar S, et al. CRISPR/Cas9-mediated development of potato varieties with long-term cold storage and bruising resistance. Biology. 2025;14(7):445. https://doi.org/10.3390/biology14040445
  93. 93. Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, et al. RNA interference and CRISPR/Cas gene editing for crop improvement: paradigm shift towards sustainable agriculture. Plants. 2021;10(9):1914. https://doi.org/10.3390/plants10091914

Downloads

Download data is not yet available.