Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Bioprospecting and characterisation of cellulase producing endophytic fungus, Fusarium annulatum from Caryota urens

DOI
https://doi.org/10.14719/pst.11959
Submitted
24 September 2025
Published
22-01-2026

Abstract

Cellulases are a complex system of three enzymes, including endoglucanases, exoglucanases and β-glucosidases, that work together in synergic fashion to degrade lignocellulosic biomass into simple sugars. Despite their enormous applications, they imply high production costs, which represent a significant bottleneck limiting the industrial utilisation. This study therefore investigated the purification and characterisation of cellulase producing endophytic fungal strain, Fusarium annulatum, isolated from Caryota urens (Jaggery palm), identified by morphological characteristics and ITS sequencing. Crude cellulase enzyme was obtained from F. annulatum solid-state fermentation and partial purification of the enzyme was achieved through ammonium sulphate precipitation and dialysis. The partially purified enzyme sample exhibited significant activities of endoglucanase (1.2358 ± 0.0055 IU/mL), β-glucosidase (0.708 0.017 IU/mL) and cellobiohydrolase (0.244 ± 0.019 IU/mL). The filter paper assay of the partially purified enzyme demonstrated significant cellulase activity of 0.7406 ± 0.0258 IU/mL. The optimal pH and temperature of the partially purified enzyme were determined to be 6.0 and 50.0 °C, respectively. These results demonstrate the cellulase producing capacity of F. annulatum, anticipating its industrial production for various purposes, such as biomass conversion and biofuel production. This is one of the first reports of cellulase activity by F. annulatum.

References

  1. 1. Schmitz R, Flachsbarth F, Plaga LS, Braun M, Härtel P. Energy security and resilience: Revisiting concepts and advancing planning perspectives for transforming integrated energy systems. Energy Policy. 2025;207:114796-6. https://doi.org/10.1016/j.enpol.2025.114796
  2. 2. Smal T, Wieprow J. Energy security in the context of global energy crisis: Economic and financial conditions. Energies. 2023;16(4):1605. https://doi.org/10.3390/en16041605
  3. 3. Basera P, Chakraborty S, Sharma N. Lignocellulosic biomass: Insights into enzymatic hydrolysis, influential factors and economic viability. Discover Sustainability. 2024;5(1). https://doi.org/10.1007/s43621-024-00543-5
  4. 4. Sarojam PJ, Patel AK, Shruthy NSS, Shalu S, Dong CD, Singhania RR. Sustainability through lignin valorization: Recent innovations and applications driving industrial transformation. Bioresources and Bioprocessing. 2025;12(1). https://doi.org/10.1186/s40643-025-00929-x
  5. 5. Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P. Current perspective on production and applications of microbial cellulases: A review. Bioresources and Bioprocessing. 2021;8:95:1-41. https://doi.org/10.1186/s40643-021-00447-6
  6. 6. Zhang Z, Xing J, Li X, Lu X, Liu G, Qu Y, et al. Review of research progress on the production of cellulase from filamentous fungi. Int J Biol Macromol. 2024;277(4):134539. https://doi.org/10.1016/j.ijbiomac.2024.134539
  7. 7. Mwendwa PK, Omwenga GI, Maingi JM, Karanja AW. Evaluation of cellulase production by endophytic fungi isolated from young and mature leaves of medicinal plants using maize cob substrate. Sci Rep. 2025;15(1). https://doi.org/10.1038/s41598-025-94864-8
  8. 8. Venkatesagowda B, Ponugupaty E, Barbosa AM, Robert. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol. 2011;28(1):71-80. https://doi.org/10.1007/s11274-011-0793-4
  9. 9. Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, et al. An update of fungal endophyte diversity and strategies for augmenting therapeutic potential of their potent metabolites. Appl Biochem Biotechnol. 2025. https://doi.org/10.1007/s12010-024-05098-9
  10. 10. Bhadra F, Gupta A, Vasundhara M, Reddy MS. Endophytic fungi: A potential source of industrial enzyme producers. 3 Biotech. 2022;12(4). https://doi.org/10.1007/s13205-022-03145-y
  11. 11. Nazir A, Puthuveettil AR, Hasnain F, Hamed KE, Munawar N. Endophytic fungi: Nature’s solution for antimicrobial resistance and sustainable agriculture. Front Microbiol. 2024;15. https://doi.org/10.3389/fmicb.2024.1461504
  12. 12. Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms. 2022;10(5):1072. https://doi.org/10.3390/microorganisms10051072
  13. 13. Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Wan J. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon. 2024;10(11):e31573-3. https://doi.org/10.1016/j.heliyon.2024.e31573
  14. 14. Wippel K. Plant and microbial features governing an endophytic lifestyle. Curr Opin Plant Biol. 2023;76:102483. https://doi.org/10.1016/j.pbi.2023.102483
  15. 15. Nazir M, Iram A, Cekmecelioglu D, Demirci A. Approaches for producing fungal cellulases through submerged fermentation. Front Biosci Elite. 2024;16(1):5. https://doi.org/10.31083/j.fbe1601005
  16. 16. Hawar SN. Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as medicinal plant. Int J Biomater. 2022;1-9. https://doi.org/10.1155/2022/2135927
  17. 17. Raghav D, Jyoti A, Siddiqui AJ, Saxena J. Plant-associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, challenges and strain improvement with precision approaches. J Appl Microbiol. 2022. https://doi.org/10.1111/jam.15574
  18. 18. Sopalun K, Iamtham S. Isolation and screening of extracellular enzymatic activity of endophytic fungi isolated from Thai orchids. S Afr J Bot. 2020. https://doi.org/10.1016/j.sajb.2020.02.005
  19. 19. Wang X, Pecoraro L. Analysis of soil fungal and bacterial communities in Tianchi Volcano Crater, Northeast China. Life (Basel). 2021;11(4):280. https://doi.org/10.3390/life11040280
  20. 20. Basha MA, Shetaia YM, Mehaya FM, Abdelzaher FH. Solid-state fermentation and optimization of cellulase production using local fungal isolate. Egypt Pharm J. 2023;22(3):456-65. https://doi.org/10.4103/epj.epj_30_23
  21. 21. Guder DG, Krishna MSR. Isolation and characterization of potential cellulose degrading bacteria from sheep rumen. J Pure Appl Microbiol. 2019;13(3):1831-9. https://doi.org/10.22207/JPAM.13.3.60
  22. 22. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. 1990:315-22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  23. 23. Díaz GV, Coniglio RO, Chungara CI, Zapata PD, Villalba LL, Fonseca MI. Aspergillus niger LBM 134 isolated from rotten wood and its potential cellulolytic ability. Mycology. 2020:1-14. https://doi.org/10.1080/21501203.2020.1823509
  24. 24. Zhao S, Wang JX, Hou R, Ning YN, Chen ZX, Liu Q, et al. Novel transcription factor CXRD regulates cellulase and xylanase biosynthesis in Penicillium oxalicum under solid-state fermentation. Appl Environ Microbiol. 2023;89(6):e00360-23. https://doi.org/10.1128/aem.00360-23
  25. 25. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-8. https://doi.org/10.1021/ac60147a030
  26. 26. Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 1944;153(2):375-80. https://doi.org/10.1016/S0021-9258(18)71980-7
  27. 27. Sharrock KR. Cellulase assay methods: A review. J Biochem Biophys Methods. 1988;17(2):81-105. https://doi.org/10.1016/0165-022X(88)90040-1
  28. 28. Santa-Rosa PS, Souza AL, Andrade EVR, Astolfi-Filho S, Mota AJ, et al. Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region. Electron J Biotechnol. 2018;31:84-92. https://doi.org/10.1016/j.ejbt.2017.11.005
  29. 29. Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257-68. https://doi.org/10.1351/pac198759020257
  30. 30. Sulyman AO, Igunnu A, Malomo SO. Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon. 2020;6(12):e05668. https://doi.org/10.1016/j.heliyon.2020.e05668
  31. 31. Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwarz WH. Highly thermostable endo-1,3-β-glucanase LamA from Thermotoga neapolitana: Nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology. 1997;143(5):1701-8. https://doi.org/10.1099/00221287-143-5-1701
  32. 32. Arif S, M'Barek HN, Bekaert B, Aziz MB, Diouri M, Haesaert G, et al. Lignocellulolytic enzymes production by four wild filamentous fungi for olive stones valorization. J Microbiol Biotechnol. 2024;34(5):1017-28. https://doi.org/10.4014/jmb.2312.12048
  33. 33. Azzaz HH, Murad HA, Aboamer AA, Alzahar H, Fahmy M. Cellulase production by Fusarium graminearum and its application in ruminant diets degradation. Pak J Biol Sci. 2019;23(1):27-34. https://doi.org/10.3923/pjbs.2020.27.34
  34. 34. Poornamath BP, Sarojini S, Jayaram S, Biswas S, Kaloor A, Umesh M. Solid-state fermentation of pigment producing endophytic fungus Fusarium solani from Madiwala Lake and its toxicity studies. J Appl Biol Biotechnol. 2024;12(2):264-72. https://doi.org/10.7324/JABB.2024.143030
  35. 35. Najjarzadeh N, Matsakas L, Rova U, Christakopoulos P. Effect of carbon source and degree of oligosaccharide polymerization on production of cellulase-degrading enzymes by Fusarium oxysporum f. sp. lycopersici. Front Microbiol. 2021;12:652655. https://doi.org/10.3389/fmicb.2021.652655
  36. 36. Rahnama M, Condon B, Ascari JP, Dupuis JR, Del Ponte EM, Pedley KF, et al. Recent co-evolution of two pandemic plant diseases in a multi-hybrid swarm. Nat Ecol Evol. 2023;7(12):2055-66. https://doi.org/10.1038/s41559-023-02237-z
  37. 37. Zaffarano PL, McDonald BA, Linde CC. Rapid speciation following recent host shifts in the plant pathogenic fungus Rhynchosporium. Evolution. 2008;62(6):1418-36. https://doi.org/10.1111/j.1558-5646.2008.00390.x
  38. 38. Breuil C, Saddler JN. Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzyme Microb Technol. 1985;7(7):327-32. https://doi.org/10.1016/0141-0229(85)90111-5
  39. 39. Gusakov AV, Kondratyeva EG, Sinitsyn AP. Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem. 2011;2011:283658. https://doi.org/10.1155/2011/283658
  40. 40. Ja’afaru MI. Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol. 2013;2013:283423. https://doi.org/10.1155/2013/283423
  41. 41. Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, et al. Characterization of actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates. SpringerPlus. 2014;3(1):622. https://doi.org/10.1186/2193-1801-3-622
  42. 42. Munyasi KM, Omwenga GI, Mwamburi FM. Production and characterization of cellulolytic enzymes by Chaetomium globosum for biomass saccharification and ethanol production. Discovery. 2024;60(334):1-21. https://doi.org/10.54905/disssi.v60i334.e14d1425
  43. 43. Syed S, Riyaz-Ul-Hassan S, Johri S. A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. Am J Microbiol Res. 2013;1(4):84-91. https://doi.org/10.12691/ajmr-1-4-4
  44. 44. Abdullah R, Tahseen M, Nisar K, Kaleem A, Iqtedar M, Saleem F, et al. Statistical optimization of cellulases by Talaromyces thermophilus utilizing Saccharum spontaneum. Electron J Biotechnol. 2021;51:79-87. https://doi.org/10.1016/j.ejbt.2021.03.007
  45. 45. Kwon HW, Yoon JH, Kim SH, Hong SB, Cheon YA, Ko SJ. Detection of extracellular enzyme activities in various Fusarium spp. Mycobiology. 2007;35(3):162-5. https://doi.org/10.4489/MYCO.2007.35.3.162
  46. 46. Gao Z, Van Hop D, Yen LTH, Ando K, Hiyamuta S, Kondo R. Production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express. 2012;2(1):49. https://doi.org/10.1186/2191-0855-2-49
  47. 47. Saroj P, Manasa P, Narasimhulu K. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes under solid-state fermentation. Bioresour Bioprocess. 2018;5(1):31. https://doi.org/10.1186/s40643-018-0216-6
  48. 48. Filho EXF. Purification and characterization of a β-glucosidase from solid-state cultures of Humicola grisea var. thermoidea. Can J Microbiol. 1996;42(1):1-5. https://doi.org/10.1139/m96-001
  49. 49. Sørensen A, Lübeck PS, Lübeck M, Teller PJ, Ahring BK. β-Glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Can J Microbiol. 2011;57(8):638-50. https://doi.org/10.1139/w11-052
  50. 50. Tiwari P, Misra BN, Sangwan NS. β-Glucosidases from the fungus Trichoderma: An efficient cellulase machinery in biotechnological applications. BioMed Res Int. 2013;2013:203735. https://doi.org/10.1155/2013/203735
  51. 51. Cabezas L, Calderon C, Medina LM, Bahamon I, Cardenas M, Bernal AJ, et al. Characterization of cellulases of fungal endophytes isolated from Espeletia spp. J Microbiol. 2012;50(6):1009-13. https://doi.org/10.1007/s12275-012-2130-5
  52. 52. Toghueo RMK, Ejiya IE, Sahal D, Yazdani SS, Boyom FF. Production of cellulolytic enzymes by endophytic fungi isolated from Cameroonian medicinal plants. Int J Curr Microbiol Appl Sci. 2017;6(2):1264-71. https://doi.org/10.20546/ijcmas.2017.602.142
  53. 53. Dutta SD, Tarafder M, Islam R, Datta B. Characterization of cellulolytic enzymes of Fusarium soil isolates. Biocatal Agric Biotechnol. 2018;14:279-85. https://doi.org/10.1016/j.bcab.2018.03.011
  54. 54. Silva JCR, Salgado JCS, Vici AC, Ward RJ, Polizeli MLTM, Guimarães LHS, et al. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Braz J Microbiol. 2020;51(2):537-45. https://doi.org/10.1007/s42770-019-00167-2
  55. 55. Kabir MF, Ju LK. On optimization of enzymatic processes: Temperature effects on activity and long-term deactivation kinetics. Process Biochem. 2023;130:734-46. https://doi.org/10.1016/j.procbio.2023.05.031
  56. 56. Boondaeng A, Keabpimai J, Trakunjae C, Vaithanomsat P, Srichola P, Niyomvong N. Cellulase production under solid-state fermentation by Aspergillus sp. IN5. Heliyon. 2024;10(5):e26601. https://doi.org/10.1016/j.heliyon.2024.e26601
  57. 57. Yamanaka T. Effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia. 2003;95(4):584-9. https://doi.org/10.1080/15572536.2004.11833062
  58. 58. Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int. 2011;2011:810425. https://doi.org/10.4061/2011/810425
  59. 59. Li C, Yang Z, Zhang R, Zhang D, Chen S, Ma L. Effect of pH on cellulase production and morphology of Trichoderma reesei and application in cellulosic material hydrolysis. J Biotechnol. 2013;168(4):470-7. https://doi.org/10.1016/j.jbiotec.2013.10.003
  60. 60. Sivakumar B, Rao NR, Poornamath BP, Jayaram S, Sarojini S. Multifarious pigment producing fungi of Western Ghats and their potential. Plant Sci Today. 2022;9(3):733-47. https://doi.org/10.14719/pst.1759
  61. 61. Philip I, Sarojini S, Biswas S, Jayaram S. Plant growth promotion properties of bacterial endophytes isolated from Alternanthera philoxeroides and Eichhornia crassipes. S Afr J Bot. 2023;162:588-603. https://doi.org/10.1016/j.sajb.2023.09.028
  62. 62. Biswas S, Philip I, Jayaram S, Sarojini S. Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides exhibit additive plant growth-promoting and biocontrol activities. J Genet Eng Biotechnol. 2023;21(1):153. https://doi.org/10.1186/s43141-023-00620-8
  63. 63. Jayaram S, Biswas S, Philip I, Umesh M, Sarojini S. Differential laccase production among diverse fungal endophytes in aquatic plants of Hulimavu Lake, Bangalore, India. J Pure Appl Microbiol. 2023;17(1):298-308. https://doi.org/10.22207/JPAM.17.1.19
  64. 64. Biswas S, Sarojini S. Fungal endophytic species Fusarium annulatum and Fusarium solani: Identification, molecular characterization and plant growth promotion properties. Plant Sci Today. 2024;11(1):466-72. https://doi.org/10.14719/pst.2688

Downloads

Download data is not yet available.