Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Efficacy of Bacillus and Trichoderma on growth and anthracnose resistance in scallion

DOI
https://doi.org/10.14719/pst.3074
Submitted
7 November 2023
Published
04-03-2025 — Updated on 01-04-2025
Versions

Abstract

Biotic elicitors, including Trichoderma and Bacillus can improve plant growth and disease resistance. Current research evaluated the efficacy of 14 Bacillus subtilis strains, Trichoderma viride, Trichoderma harzianum, Trichoderma sp. on enhancing growth and managing anthracnose in scallion. The inhibition efficiency of Bacillus and Trichoderma on Colletotrichum growth was assessed in vitro. Besides, effective biotic treatments against anthracnose were evaluated at net house conditions. Then, defence mechanisms including endogenous SA accumulation, production of phenolic compounds, catalase, peroxidase, phenylalanine ammonia-lyase and b-1,3-glucanase were revealed. The results showed that four biotic elicitors, including B. subtilis strains CaSUT008-2, D604, SUNB1 and T. harzianum showed high antagonistic activity against in vitro growth of Colletotrichum colonies at 41-77 %. At 28 days after planting, scallion plants treated with B. subtilis strain CaSUT008-2 and SUNB1 gained stem length at 15.35-15.79 cm. These four biotic treatments had low disease severity in net-house conditions at 25.00-50.00 %. On mechanisms of anthracnose resistance, at 24 hours after inoculation (HAI), scallion plants treated with T. harzianum and B. subtilis strain CaSUT008-2 showed high content of salicylic acid at 2.17-2.20 µg/g fresh weight. At 48 HAI, scallion plants induced by B. subtilis strain SUNB1 increased phenolic compounds at 42.65 µg gallic acid/mg dry mass. Moreover, four biotic elicitors enhanced activities of catalase, peroxidase, phenylalanine ammonia-lyase and b-1,3-glucanase in treated scallion plants. This study suggests that B. subtilis strain CaSUT008-2 and SUNB1, T. harzianum stimulated growth, helped scallion plants against anthracnose disease. The combined Trichoderma-bacteria bio-inoculants may be a good strategy to develop biocontrol agent and plant growth promoter within green and sustainable production of scallion.

References

  1. Alberti I, Prodi A, Montanari M, Paglia G, Asioli C, Nipoti P. First report of Fusarium proliferatum associated with Allium fistulosum L. in Italy. J Plant Dis Prot. 2018;125:231-33. https://doi.org/10.1007/s41348-017-0134-4
  2. Inden H, Asahira T. Japanese bunching onion (Allium fistulosum L.). In: Brewster JL, Rabinowitch HD, editors. Onions and allied crops. Vol. III: Biochemistry food science minor crops. Florida: CRC Press; 1990. p. 159-78.
  3. FAO. Production Data [Internet]. Italia, Roma: Food and Agriculture Organiation, 2022 [cited 2023 Feb 21]. Available from: http://faostat.fao.org
  4. Statista Research Department. Shallots production volume Thailand 2016-2022. [Internet]. Thailand, Bangkok: Statista Research Department, 2023 [cited 2023 Jun 29]. Available from: https://www.statista.com/statistics/1041245/thailand-shallots-production-volume/
  5. Vietnam General Statistics Office. Production Data [Internet]. Viet Nam, Ha Noi: Vietnam General Statistics Office, 2023 [cited 2023 Jun 25].
  6. Schwartz HF, Mohan SK. PART I: Infectious/biotic Diseases. In: Schwartz HF, Mohan SK, editors. Compendium of onion and garlic diseases and pests, 2nd ed. USA: American Phytopathological Society; 2008. P.8-86.
  7. Santana KFA, Garcia CB, Matos KS, Hanada RE. First report of anthracnose caused by Colletotrichum spaethianum on Allium fistulosum in Brazil. Plant Dis. 2015;100:150803104216002. https://doi.org/10.1094/PDIS-07-15-0737-PDN
  8. Dutta R, Jayalakshmi K, Nadig SM, Manjunathagowda DC, Gurav VS, Singh M. Anthracnose of onion (Allium cepa L.): A twister disease. Pathogens. 2022;11(884):1-21. https://doi.org/10.3390/pathogens11080884
  9. Koike ST, Gladders P, Paulus A. Vegetable diseases: A colour handbook. New York: CRC Press; 2006.
  10. Kumar A, Kudachikar VB. Antifungal properties of essential oils against anthracnose disease: a critical appraisal. J Plant Dis Prot. 2018;125:133-44. https://doi.org/10.1007/s41348-017-0128-2
  11. Kumar A, Kudachikar V. Efficacy of aroma compounds for postharvest management of mango anthracnose. J Plant Dis Prot. 2020;127:245-56. https://doi.org/10.1007/s41348-019-00286-w
  12. Alberto RT, Otanes AT. Morphological and molecular identification and fungicide sensitivity assay of pathogens attacking guyabano (Annona muricata) in Philippines. Plant Path & Quar. 2016;6:60-79. https://doi.org/10.5943/ppq/6/1/9
  13. Le Thanh T, Thumanu K, Wongkaew S, Boonkerd N, Teaumroong N, Phansak P, et al. Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. J Plant Interact. 2017;12:108-20. https://doi.org/10.1080/17429145.2017.1291859
  14. Lazié D, Putnik-Deli? M, Dani?i? M, Župunski M, Arsenov D, Vukovi? S, et al. Efficiency of Si in alleviating NaCl-induced stress in oilseed rape. Pak J Agri Sci. 2020;57:901-07. https://doi.org/10.21162/PAKJAS/20.8657
  15. Mahmood-ur-Rehman M, Amjad M, Ziaf K, Ahmad R. Seed priming with salicylic acid improve seed germination and phtsiological responses of carrot seeds. Pak J Agri Sci. 2020;57:351-59.
  16. Kifle MH, Yobo KS, Laing MD. Biocontrol of Aspergillus flavus in groundnut using Trichoderma harzanium strain kd. J Plant Dis Prot. 2017;124(1):51-56. https://doi.org/10.1007/s41348-016-0066-4
  17. Rajkumar K, Naik MK, Amaresh YS, Chennappa G. Induction of systemic resistance by Bacillus subtilis isolates against Fusarium wilt of chilli. Int J Curr Microbiol Appl Sci. 2017;7:2669-80. https://doi.org/10.20546/ijcmas.2018.707.313
  18. Satapathy RR, Sahoo KC. Trichoderma asperellum behave as antagonist to control leaf spot and flower blight of marigold. Plant Science Today. 2022;9(4):1032-35. https://doi.org/10.14719/pst.1915
  19. Akramov I, Axanbayev S, Alikulov B, Mukhtorova S, Ergashev A, Ismailov Z. Plant growth-promoting properties of endophytic bacteria isolated from some xerophytic plants distributed in arid regions (Uzbekistan). Plant Science Today. 2023;10(4): 228-37. https:// doi.org/10.14719/pst.2725
  20. Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31:446-59. https://doi.org/10.1080/13102818.2017.1286950
  21. Naseer I, Ahmad M, Hussain A, Jamil M. Potential of zinc solubilizing Bacillus strains to improve rice growth under axenic conditions. Pak J Agri Sci. 2020;57:1057-71. https:// doi.org/10.21162/PAKJAS/20.9988
  22. Hussain A, Zahir ZA, Asghar HN, Imran M, Ahmad M, Hussain S. Integrating the potential of Bacillus sp. AZ6 and organic waste for zinc oxide bio-activation to improve growth, yield and zinc content of maize grains. Pak J Agri Sci. 2020;57(1):123-30. https:// doi.org/10.21162/PAKJAS/20.8015
  23. Alina SO, Constantinscu F, Petru?a CC. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotechnol Lett. 2015;20:10737-50.
  24. García?Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez?García A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate?and salicylic acid?dependent defence responses. Microb Biotechnol. 2013;6:264-74. https://doi.org/10.1111/1751-7915.12028
  25. Karthikeyan M, Jayakumar V, Radhika K, Bhaskaran R, Velazhahan R, Alice D. Induction of resistance in host against the infection of leaf blight pathogen (Alternaria palandui) in onion (Allium cepa var aggregatum). Indian J Biochem Biophys. 2005;42:371-77.
  26. Yanti Y. Peroxidase enzyme activity of rhizobacteria-introduced shallots bulbs to induce resistance of shallot towards bacterial leaf blight (Xanthomonas axonopodis pv allii). Procedia Chem. 2015;14:501-07. https://doi.org/10.1016/j.proche.2015.03.067
  27. Thumanu K, Wongchalee D, Sompong M, Phansak P, Le Thanh T, Namanusart W, et al. Synchrotron-based FTIR microspectroscopy of chili resistance induced by Bacillus subtilis strain D604 against anthracnose disease. J Plant Interact. 2017;12:255-63. https://doi.org/10.1080/17429145.2017.1325523
  28. Thanh NT, Nhung HT, Thuy NT, Lam TTN, Giang PT, Lan TN, et al. The diversity and antagonistic ability of Trichoderma spp. on the Aspergillus flavus pathogen on peanuts in North Center of Vietnam. World J Agric Res. 2014;2:291-95. https://doi.org/10.12691/wjar-2-6-8
  29. Nowak A, Tyskiewicz R, Wiater A, Jaroszuk-Scisel J. (1?3)-?-D-glucooligosaccharides as elicitors influencing the activity of plant resistance pathways in wheat tissues. Agronomy 2022;12(1170):1-20. https://doi.org/10.3390/agronomy12051170
  30. Damanik RI, Maziah M, Ismail MR, Syahida A, Zain AM. Responses of antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol Plant 2010;32:739-47. https://doi.org/10.1007/s11738-009-0456-3
  31. Warrier RR, Paul M, Vineetha MV. Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genet Plant Physiol. 2013;3:90-97.
  32. Blainski A, Lopes GC, de Mello JCP. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013;18:6852-65. https://doi.org/10.3390/molecules18066852
  33. Živkovi? S, Stojanovi? S, Ivanovi? Ž, Gavrilovi? V, Popovi? T, Balaž J. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci. 2010;62:611-23. https://doi.org/10.2298/ABS1003611Z
  34. Ashwini N, Srividya S. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotech. 2014;4:127-36. https://doi.org/10.1007/s13205-013-0134-4
  35. Chowdhury SK, Roy N, Banerjee M, Basnett D. Plant growth promotion and antifungal activities of the mango phyllosphere bacterial consortium for the management of Fusarium wilt disease in pea (Pisum sativum L.). Plant Science Today. 2023;10(3):220-34. https://doi.org/10.14719/pst.2267
  36. Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, et al. Molecular mechanism of plant growth promotion and induced systemic resistance to Tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol. 2009;19:1250-58. https://doi.org/10.4014/jmb.0901.008
  37. Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol. 2017;8:171. https://doi.org/10.3389/fmicb.2017.00171
  38. Jabborova D, Enakiev Y, Sulaymanov K, Kadirova D, Ali A, Annapurna K. Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Science Today 2021;8(1):66-71. https://doi.org/10.14719/pst.2021.8.1.997
  39. Ishak Z, Mohd Iswadi MK, Russman Nizam AH, Ahmad Kamil MJ, Ernie Eileen RR. Plant growth hormones produced by endophytic Bacillus subtilis strain lkm-bk isolated from cocoa. Malaysian Cocoa J. 2016;9:127-33.
  40. Moraes SRG, Tanaka FAO, Junior NSM. Histopathology of Colletotrichum gloeosporioides on guava fruits (Psidium guajava L.). Plant Protection Rev Bras Frutic. 2013;35(2):657-64. https://doi.org/10.1590/S0100-29452013000200039
  41. Pandey A, Pandey BK, Muthukumar M, Yamada LP, Chauhan UK. Histopathology study of infection process of Colletotrichum gloeosporioides Penz and Sacc. on Mangifera indica L. Plant Pathology Journal 2012;11(1):18-24. https://doi.org/10.3923/ppj.2012.18.24
  42. Mauch-Mani B, Slusarenko AJ. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica . Plant Cell 1996;8:203–12. https://doi.org/10.1105/tpc.8.2.203
  43. Bakhshi B, Malla S, Lokesh S. Monitoring of defense enzymes (phenylalanine ammonia lyase and peroxidase) in Magnaporthe oryzae infected leaves after treatment with green synthesized silver nanoparticles. Indian J of Pharmaceutical Education and Research 2023;57(1):141-46. https://www.ijper.org
  44. Saxena A, Mishra S, Ray S, Raghuwanshi R, Singh H. Differential reprogramming of defense network in Capsicum annum L. plants against Colletotrichum truncatum infection by phyllospheric and rhizospheric Trichoderma strains. J Plant Growth Regul. 2019;39:751-63. https://doi.org/10.1007/s00344-019-10017-y
  45. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot. 2010;61(15):4197-220. https://doi.org/10.1093/jxb/erq282
  46. Pei Y, Xue Q, Zhang Z, Shu P, Deng H, Bouzayen M, et al. 2023. ?-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Plant Physiology, kiad262. https://doi.org/10.1093/plphys/kiad262
  47. Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010;11:705-19. https://doi.org/10.1111/j.1364-3703.2010.00625.x
  48. Kulbat K. The role of phenolic compounds in plant resistance. Biotechnol Food Sci. 2016;8:97-108. https://doi.org/10.34658/bfs.2016.80.2.97-108
  49. Jonathan GS, Diabaté S, Joseph KK, Odette DD, Yves-Alain B. Improvement of cassava resistance to Colletotrichum gloeosporioïdes by salicylic acid, phosphorous acid and fungicide Sumi 8. Int J Curr Microbiol Appl Sci. 2015;4:854-65.

Downloads

Download data is not yet available.