Review Articles
Vol. 12 No. 3 (2025)
Natural compounds as mosquito larvicides: A comprehensive review
Department of Life science, CHRIST University, Bangalore, 560029, India
Department of Life science, Christ University, Bangalore, 560029, India
Abstract
As a tropical country, India is a fertile breeding ground for mosquitoes, leading to more than 7 lakh deaths annually. The need to control their widespread use was essential globally, leading to chemical usage. Synthetic insecticides used in chemical control methods have been preferred since the previous era due to their spontaneous effect and ease of application. However, it has now been recognized that chemical insecticides and larvicides cannot be utilized for vector control on the same scale due to many known and unknown causes. The problems, ranging from general skin irritation to severe deadly issues such as genetic disorders, have been reported. The mosquito population is increasing daily due to many factors, such as environmental pollution, water quality, global warming, and so on, which are causing detrimental effects; however, these are interconnected, which worsens the scenario. Even though undeveloped countries suffer from those mentioned above, cost-effective eradication is a topic to be interrogated. Hence, they follow and use cheap chemicals common in the market, leading to environmental pollution. Therefore, it is necessary to investigate the possible efficacy of biologically active plant extracts to lessen pollution and lower expenditure. This review examines 30 plants from 10 families, highlighting their effects on mosquito larvae and potential use in controlling mosquito populations.
References
- 1. Naik BR, Tyagi B, Xue R-D. Mosquito-borne diseases in India over the past 50 years and their global public health implications: A systematic review. J Am Mosq Control Assoc. 2023;39(4):258–77. https://doi.org/10.2987/23-7131
- 2. Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. Insects. 2022;13(12):1076.https://doi.org/10.3390/insects13121076
- 3. Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. The Indian J Med Res. 2012;135(5):581–8.
- 4. Das N, Goswami D, Rabha B. Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vector Borne Dis. 2007;44(2):145–8.
- 5. Marimuthu G, Rajamohan S, Mohan R, Krishnamoorthy Y. Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (Family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.)(Diptera: Culicidae) vector mosquitoes. Parasitol Res. 2012;111:65–77.https://doi.org/10.1007/s00436-011-2802-9
- 6. Govindarajan M, Rajeswary M, Sivakumar R. Mosquito larvicidal and ovicidal activity of Delonix elata (L.) Gamble against Culex quinquefasciatus Say (Diptera: Culicidae). Asian Pac J Trop. Dis. 2012;2:S571–S3.https://doi.org/10.1016/S2222-1808(12)60223-0
- 7. Laxmanshetty S, Kolume D. Evaluation of larvicidal activity of Bakuchi (Psoralea corylifolia Linn.) beeja extracts against Aedes aegypti larvae. Ann Ayurvedic Med. 2018;6(3):90–97.https://doi.org/10.5455/AAM.277375
- 8. Virendra KD, Kumar A, Pandey AC, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn. (Fabaceae) against Culex quinquefasciatus Say, 1823. Parasites Vectors. 2013;6:30. https://doi.org/10.1186/1756-3305-6-30
- 9. Osawota V, Imieje V, Iloba B. Phytochemical screening and comparative larvicidal activity of Albizia lebbeck and Tamarindus indica leaf extracts against Culex quinquefasciatus and Aedes aegypti. J Appl Sci Environ Manage. 2022;26(12):2015–23. https://doi.org/10.4314/jasem.v26i12.15
- 10. Kumar S, Singh N, Mittal A, Kharkwal H, Jain SK, Goel B. The genus Leucas: a review on phytochemistry and pharmacological activities. Fitoterapia. 2023;167:105492. https://doi.org/10.1016/j.fitote.2023.105492
- 11. Elumalai D, Hemalatha P, Kaleena P. Larvicidal activity and GC–MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Saudi Soc. Agric Sci. 2017;16(4):306–13.https://doi.org/10.1016/j.jssas.2015.10.003
- 12. Patel JJ, Acharya SR, Acharya NS. Clerodendrum serratum (L.) Moon.–A review on traditional uses, phytochemistry and pharmacological activities. J Ethnopharmacol. 2014;154(2):268–85.https://doi.org/10.1016/j.jep.2014.03.071
- 13. Patil PB, Kallapur SV, Kallapur VL, Holihosur SN. Clerodendron inerme Gaertn. plant as an effective natural product against dengue and filarial vector mosquitoes. Asian Pac J Trop Dis. 2014;4:S453–S62. https://doi.org/10.1016/S2222-1808(14)60490-4
- 14. Govindarajan M, Rajeswary M, Hoti S, Murugan K, Kovendan K, Arivoli S, et al. Clerodendrum chinense-mediated biofabrication of silver nanoparticles: Mosquitocidal potential and acute toxicity against non-target aquatic organisms. J Asia Pac Entomol. 2016;19(1):51–8. https://doi.org/10.1016/j.aspen.2015.11.009
- 15. Ansari M, Vasudevan P, Tandon M, Razdan R. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour Technol. 2000;71(3):267–71. https://doi.org/10.1016/S0960-8524(99)00079-6
- 16. Kumar S, Wahab N, Warikoo R. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed. 2011;1(2):85–8. https://doi.org/10.1016/S2221-1691(11)60001-4
- 17. Shahana S, Nikalje APG, Nikalje G. A brief review on Bauhinia variegata: phytochemistry, antidiabetic and antioxidant potential. Am J Pharmtech Res. 2017;7:186–97.
- 18. Raguvaran K, Maheswaran R. Bauhinia variegata L and Croton sparsiflorus L against the human vector mosquitoes. New Vis Biol Sci. 2021;4:90–4. https://doi.org/10.9734/bpi/nvbs/v4/2045F
- 19. Govindarajan M, Sivakumar R, Rajeswari M. Larvicidal efficacy of Cassia fistula Linn. leaf extract against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med. 2011;1(4):295–8. https://doi.org/10.1016/S2222-1808(11)60070-4
- 20. Duraipandiyan V, Ignacimuthu S, Paulraj MG. Antifeedant and larvicidal activities of Rhein isolated from the flowers of Cassia fistula L. Saudi J Biol Sci. 2011;18(2):129–33. https://doi.org/10.1016/j.sjbs.2010.12.009
- 21. Krishnappa K, Elumalai K. Mosquitocidal activity of indigenenous plants of Western Ghats, Achrassapota Linn. (Sapotaceae) and Cassia auriculata L.(Fabaceae) against a common malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). J Coast Life Med. 2014;2(5):402–10.https://doi.org/10.1007/s00436-008-1306-8
- 22. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G. Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res. 2009;104:1163–71.https://doi.org/10.1007/s00436-008-1306-8
- 23. Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem. 2014;165:424–43. https://doi.org/10.1016/j.foodchem.2014.05.002
- 24. Ugboaja T, Ndukwe G, Fekerurhobo G. Investigation of Hibiscus sabdariffa as a new eco-friendly photo-larvicidal natural product for the control of mosquitoes. Scientia Africana. 2022;21(1):245–52. https://doi.org/10.4314/sa.v21i1.21
- 25. Veerakumar K, Govindarajan M, Rajeswary M. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2013;112(12):4073–85. https://doi.org/10.1007/s00436-013-3598-6
- 26. Govindarajan M. Larvicidal and repellent activities of Sida acuta Burm. F.(Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med. 2010;3(9):691–5. https://doi.org/10.1016/S1995-7645(10)60167-8
- 27. Everton GO, Rosa PVS, Neves SC, Pereira APM, Lima ECS, Mendonça IP, et al. Chemical characterization, antimicrobial activity and toxicity of essential oils of Pimenta dioica L. and Citrus sinensis L. Osbeck. Res Soc Dev. 2020;9(7):e803974842. https://doi.org/10.33448/rsd-v9i7.4842
- 28. Cortés-Rojas DF, de Souza CRF, Oliveira WP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed. 2014;4(2):90–6. https://doi.org/10.1016/S2221-1691(14)60215-X
- 29. Nuñez L, D'Aquino M. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz J Microbiol. 2012;43:1255–60. https://doi.org/10.1590/S1517-83822012000400003
- 30. Araujo AFdO, Ribeiro-Paes JT, Deus JTd, Cavalcanti SCdH, Nunes RdS, Alves PB, et al. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz. 2016;111:443–9. https://doi.org/10.1590/0074-02760160075
- 31. Lucia A, Juan LW, Zerba EN, Harrand L, Marcó M, Masuh HM. Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2012;110:1675–86. https://doi.org/10.1007/s00436-011-2685-9
- 32. Cheng S-S, Huang C-G, Chen Y-J, Yu J-J, Chen W-J, Chang S-T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol. 2009;100(1):452–6.https://doi.org/10.1016/j.biortech.2008.02.038
- 33. Younoussa L, Kenmoe F, Oumarou MK, Batti ACS, Tamesse JL, Nukenine EN. Combined effect of methanol extracts and essential oils of Callistemon rigidus (Myrtaceae) and Eucalyptus camaldulensis (Myrtaceae) against Anopheles gambiae Giles larvae (Diptera: Culicidae). Int J Zool. 2020;2020:1–9. https://doi.org/10.1155/2020/4952041
- 34. Gulzar T, Uddin N, Siddiqui BS, Naqvi SN, Begum S, Tariq RM. New constituents from the dried fruit of Piper nigrum Linn., and their larvicidal potential against the dengue vector mosquito Aedes aegypti. Phytochem Lett. 2013;6(2):219–23. https://doi.org/10.1016/j.phytol.2013.01.006
- 35. Bae IK, Kim K, Choi S-D, Chang K-S, Lee H-S, Lee S-E. Mosquito larvicidal activities of naturally occurring compounds derived from Piper species. Appl Biol Chem. 2017;60:113–7.https://doi.org/10.1007/s13765-017-0256-1
- 36. Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin E-S, Selin-Rani S, et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant-derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf. 2017;139:439–46. https://doi.org/10.1016/j.ecoenv.2017.01.026
- 37. Prabhu K, Sudharsan P, Kumar PG, Chitra B, Janani C. Impact of Piper betle L. bioactive compounds in larvicidal activity against Culex quinquefasciatus. J Nat Pestic Res. 2022;2:100013. https://doi.org/10.1016/j.napere.2022.100013
- 38. Dey P, Goyary D, Chattopadhyay P, Kishor S, Karmakar S, Verma A. Evaluation of larvicidal activity of Piper longum leaf against the dengue vector, Aedes aegypti, malarial vector, Anopheles stephensi and filariasis vector, Culex quinquefasciatus. S Afr J Bot. 2020;132:482–90. https://doi.org/10.1016/j.sajb.2020.06.016
- 39. Kumar S, Warikoo R, Wahab N. Larvicidal potential of ethanolic extracts of dried fruits of three species of peppercorns against different instars of an Indian strain of dengue fever mosquito, Aedes aegypti L.(Diptera: Culicidae). Parasitol Res. 2010;107:901–7.https://doi.org/10.1007/s00436-010-1948-1
- 40. Kovendan K, Murugan K, Shanthakumar S, Vincent S. Evaluation of larvicidal and pupicidal activity of Morinda citrifolia L.(Noni)(Family: Rubiaceae) against three mosquito vectors. Asian Pac J Trop Dis. 2012;2:S362–S9. https://doi.org/10.1016/S2222-1808(12)60182-0
- 41. Kovendan K, Shanthakumar SP, Praseeja C, Kumar PM, Murugan K, Vincent S. Mosquitocidal properties of Morinda citrifolia L.(Noni)(Family: Rubiaceae) leaf extract and Metarhizium anisopliae against malaria vector, Anopheles stephensi Liston.(Diptera: Culicidae). Asian Pac J Trop Dis. 2014;4:S173–S80. https://doi.org/10.1016/S2222-1808(14)60435-7
- 42. Chandhirasekar K, Thendralmanikandan A, Thangavelu P, Nguyen B-S, Nguyen T-A, Sivashanmugan K, et al. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater Lett. 2021;287:129265. https://doi.org/10.1016/j.matlet.2020.129265
- 43. Pratheeba T, Taranath V, Gopal DS, Natarajan D. Antidengue potential of leaf extracts of Pavetta tomentosa and Tarenna asiatica (Rubiaceae) against dengue virus and its vector Aedes aegypti (Diptera: Culicidae). Heliyon. 2019;5(11). https://doi.org/10.1016/j.heliyon.2019.e02732
- 44. Kumar AN, Jeyalalitha T, Murugan K, Madhiyazhagan P. Bioefficacy of plant-mediated gold nanoparticles and Anthocephalus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res. 2013;112:1053–63.https://doi.org/10.1007/s00436-012-3232-z
- 45. Ali SI, Venkatesalu V. Larvicidal activity of Neolamarckia cadamba against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Proc Zool Soc. 2020;73:227–34. https://doi.org/10.1007/s12595-020-00323-9
- 46. Rawani A, Ghosh A, Chandra G. Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res. 2010;107:1235–40. https://doi.org/10.1007/s00436-010-1993-9
- 47. Rawani A, Ghosh A, Laskar S, Chandra G. Glucosinolate from the leaf of Solanum nigrum L.(Solanaceae) as a new mosquito larvicide. Parasitol Res. 2014;113:4423–30.https://doi.org/10.1007/s00436-014-4120-5
- 48. Afolabi OJ, Simon-Oke IA, Elufisan OO, Oniya MO. Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef Univ J Basic Appl Sci. 2018;7(1):135–8.https://doi.org/10.1016/j.bjbas.2017.09.004
- 49. Rajasekaran A, Duraikannan G. Larvicidal activity of plant extracts on Aedes aegypti L. Asian Pac J Trop Biomed. 2012;2(3):S1578–S82. https://doi.org/10.1016/S2221-1691(12)60456-0
- 50. Destrianto PD, Wardani DPK, Hikmawati I, Mujahid I. Why is Nicotiana tabacum leaf extract more effective than Piper betle leaf extract on the mortality of Aedes aegypti larvae? Exp Parasitol. 2023;247:108479.https://doi.org/10.1016/j.exppara.2023.108479
- 51. Adelaja OJ, Oduola AO, Ande AT, Abiodun OO, Adelaja AR. Toxicity of insecticidal plant oils on the larval and adult stages of a major malaria vector (Anopheles gambiae Giles 1920). Parasitol Res. 2023;122(5):1071–8. https://doi.org/10.1007/s00436-023-07806-6
- 52. Sharma M, Alexander A, Saraf S, Saraf S, Vishwakarma UK, Nakhate KT. Mosquito repellent and larvicidal perspectives of weeds Lantana camara L. and Ocimum gratissimum L. found in central India. Biocatal Agric Biotechnol. 2021;34:102040.https://doi.org/10.1016/j.bcab.2021.102040
- 53. Zoubiri S, Baaliouamer A. Larvicidal activity of two Algerian Verbenaceae essential oils against Culex pipiens. Vet Parasitol. 2011;181(2-4):370–3. https://doi.org/10.1016/j.vetpar.2011.04.033
- 54. Karunamoorthi K, Ramanujam S, Rathinasamy R. Evaluation of leaf extracts of Vitex negundo L.(Family: Verbenaceae) against larvae of Culex tritaeniorhynchus and repellent activity on adult vector mosquitoes. Parasitol Res. 2008;103:545–50.https://doi.org/10.1007/s00436-008-1005-5
- 55. Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V. Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res. 2007;101:1721–3.https://doi.org/10.1007/s00436-007-0714-5
- 56. Zheng CJ, Li HQ, Ren SC, Xu CL, Rahman K, Qin LP, et al. Phytochemical and pharmacological profile of Vitex negundo. Phytother Res. 2015;29(5):633–47.https://doi.org/10.1002/ptr.5303
- 57. Boukabache M, Chibani S, Otmani A, Nouichi A, Abdelaziz O, Karaca I. Chemical composition and insecticidal activity of Aloysia citrodora essential oil against Aphis fabae (Hemiptera: Aphididae), Rhopalosiphum maidis (Hemiptera: Aphididae) and Tribolium castaneum (Coleoptera: Tenebrionidae). Int J Trop Insect Sci. 2023;43(2):455–61.https://doi.org/10.1007/s42690-023-00949-0
- 58. Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, et al. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex
- quinquefasciatus: Synergistic and antagonistic effects. Parasitol Int. 2017;66(2):166–71.https://doi.org/10.1016/j.parint.2017.01.012
- 59. Ho JC. Antimicrobial, mosquito larvicidal and antioxidant properties of the leaf and rhizome of Hedychium coronarium. J Chin Chem Soc. 2011;58(4):563–7.https://doi.org/10.1002/jccs.201190021
- 60. Joy B, Rajan A, Abraham E. Antimicrobial activity and chemical composition of essential oil from Hedychium coronarium. Phytother Res. 2007;21(5):439–43. https://doi.org/10.1002/ptr.2091
- 61. Khandagle AJ, Tare VS, Raut KD, Morey RA. Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res. 2011;109:339–43. https://doi.org/10.1007/s00436-011-2261-3
- 62. Kalaivani K, Senthil-Nathan S, Murugesan AG. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L.(Diptera: Culicidae). Parasitol Res. 2012;110:1261–8. https://doi.org/10.1007/s00436-011-2623-x
- 63. Liu J, Zhang M, Fu Wj, Hu Jf, Dai Gh. Efficacy of bioactive compounds from Curcuma longa L. against mosquito larvae. J Appl Entomol. 2018;142(8):792–9.https://doi.org/10.1111/jen.12527
- 64. Sagnou M, Mitsopoulou K, Koliopoulos G, Pelecanou M, Couladouros E, Michaelakis A. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop. 2012;123(3):190–5. https://doi.org/10.1016/j.actatropica.2012.05.006
Downloads
Download data is not yet available.