Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Morpho-anatomy and mycorrhiza of epiphytic orchids of Tripura, Northeast India

DOI
https://doi.org/10.14719/pst.3331
Submitted
1 February 2024
Published
09-06-2025

Abstract

In the present study, eight epiphytic orchids were collected from three different districts of Tripura to investigate the morphological and anatomical attributes of leaves and roots, as well as mycorrhizal morphology and colonization. The observations revealed that leaf morphological traits varied among the orchids. Additionally, root length and root collar diameter showed significant variation among the epiphytic orchids. Four types of stomata viz., anomocytic, tetracytic, diacytic and paracytic were observed. The stomatal index ranged from 14.89 in Dendrobium lindleyi Steud to 32.27 in Rhynchostylis retusa (L.)Blume. The maximum root length was observed in Acampe praemorsa (Roxb.) Blatt. & McCann, while minimum root length was noted in Dendrobium aphyllum (Roxb.)C.E.C.Fisch.. Dendrobium transparens Wall. ex Lindl. exhibited the highest root hair density, whereas R. retusa had the lowest. All the species examined showed mycorrhizal colonization percentages ranging from 36.77 in D. lindleyi to 71.66 in A. praemorsa. The percentage of root length with intact pelotons ranged from 12.91% in D. lindleyi to 42.41% in A. praemorsa, while the percentage with lysed pelotons ranged from 23.86% in D. lindleyi to 37.55% in D. aphyllum. The cortical cells of the epiphytic orchids contained both intact and lysed pelotons, with their ratio varying among the studied species. The morphological and anatomical characteristics, along with their mycorrhizal colonization patterns, firmly support the adaptive features of orchids as epiphytes.

References

  1. 1. Dressler RL. Phylogeny and classification of the Orchid family. Portland (OR): Dioscoride; 1993
  2. 2. Gardes M. An orchid-fungus marriage-physical promiscuity, conflict and cheating. New Phytol. 2003;154:46. https://doi.org/10.1046/j.1469-8137.2002.00386.x
  3. 3. Rasmussen HN, Whigham DF. Phenology of roots and mycorrhiza in five orchid species differing in phototropic strategy. New Phytol. 2002;154:797‒807. https://doi.org/10.1046/j.1469-8137.2002.00422.x
  4. 4. Smith S, Read D. Mycorrhizal symbiosis. Academic Press, London; 2008. p. 800
  5. 5. Artwood JT. The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana. 1986;9:171‒86.
  6. 6. Hoehne FC. Orchidaceaes. Flora Brasilica. 1940;12:1‒254.
  7. 7. Gentry AH, Dodson CH. Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard. 1987;74:205–33. https://doi.org/10.2307/2399395
  8. 8. Dearnaley JDW. Further advances in orchid mycorrhizal research. Mycorrhiza. 2007;17:475–86. https://doi.org/10.1007/s00572-007-0138-1
  9. 9. Shefferson RP, Weiss M, Kull T, Taylor DL. High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Molecular Ecol. 2005;14:613–26. https://doi.org/10.1111/j.1365-294X.2005.02424.x
  10. 10. Hadley G, Johnson RPC, John DA. Fine structure in the host-fungus interface in orchid mycorhiza. Planta. 1971;100:191‒99. https://doi.org/10.1007/BF00387035
  11. 11. Athipunyakom P, Manoch L, Piluek C. Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Kasetsart J Nat Sci. 2004;38:216‒28.
  12. 12. Misra S. Orchids of India - a glimpse. Dehradun (India): Bishen Singh Mahendra Pal Singh; 2007
  13. 13. Deb DB. The flora of Tripura state. Today and tomorrow’s. Printer and Publishers, New Delhi; 1983
  14. 14. Baishnab B, Chowdhury AK, Datta BK. Trichoglottis ramosa (Lindl. Senghas (Orchidaceae): an addition to the flora of Tripura. Plant Sci Today. 2019;6(4):412–15. https://doi.org/10.14719/pst.2019.6.4.574
  15. 15. Baishnab B, Datta BK. The genus Dendrobium Sw. (Orchidaceae) in Tripura, India. Plant Sci Today. 2019;6(2):190–200. https://doi.org/10.14719/pst.2019.6.2.516
  16. 16. Adit A, Koul M, Tandon R. Twelve new additions in the orchid flora of Tripura, north-east India. Check List. 2020;16(1):17–25. https://doi.org/10.15560/16.1.17
  17. 17. Baishnab B, Paul S, Banik B, Chowdhury AK, Datta BK. Eight new additions to the Orchid flora of Tripura, NE India. Nelumbo. 2022;64(2):210–19. https://doi.org/10.20324/nelumbo/v64/2022/166851
  18. 18. Lesica P, Antibus RK. The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica. 1990;22:250‒58. https://doi.org/10.2307/2388535
  19. 19. Nurfadilah S, Dwiyulia N, Ariyanti EE. Morphology anatomy and mycorrhizal fungi colonization in roots of epiphytic orchids of Sempu Island, East Java, Indonesia. Biodiversitas. 2016;17:592–603. https://doi.org/10.13057/biodiv/d170229
  20. 20. Moreira AS, Filho JP, Isaias RM. Structural adaptations of two sympatric epiphytic orchids (Orchidaceae) to a cloudy forest environment in rocky outcrops of Southeast Brazil. Rev Biol Trop. 2013;61:1053‒65.
  21. 21. Moreira AS, Isaias RM. Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Braz Arch Biol Technol. 2008;51:83‒93. https://doi.org/10.1590/S1516-89132008000100011
  22. 22. Kowsalya A, Rojamala K, Muthukumar T. Comparative vegetative anatomy of South Indian Vandas, Orchidaceae. Flora. 2017;235:59‒75. https://doi.org/10.1016/j.flora.2017.09.002
  23. 23. Muthukumar T, Shenbagam M. Vegetative anatomical adaptations of Epidendrum radicans (Epidendroideae, Orchidaceae) to epiphytic conditions of growth. Mod Phytomorphol. 2017;11:117‒30.
  24. 24. Ma Z, Bielenberg DG, Brown KM, Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ. 2001;24:459–67. https://doi.org/10.1046/j.1365-3040.2001.00695.x
  25. 25. Das RA, Talapatra K, Chakraborty K, Saha AK, Das P. A commercially available fabric whitener serves as a stain for detection of arbuscular mycorrhizal fungi in roots. Mycorrhiza News. 2015;27(3):2‒4.
  26. 26. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990;115:495‒501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
  27. 27. Salisbury EJ. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans Royal Soc B. 1927;216:1‒65. https://doi.org/10.1098/rstb.1928.0001
  28. 28. Sathiyadash K, Muthukumar T, Uma E, Pandey RR. Mycorrhizal association and morphology in orchids. J Plant Interact. 2012;7:238‒47. https://doi.org/10.1080/17429145.2012.699105
  29. 29. Senthilkumar S, Krishnamurthy KV. The role of root hair in the mycorrhizal association of the ground orchid Spathoglottis plicata Blume. Mycorrhiza News. 1998b;10:15‒17.
  30. 30. Peterson RL, Fraquhar ML. Mycorrhizas-integrated development between roots and fungi. Mycologia. 1994;86:311‒26. https://doi.org/10.1080/00275514.1994.12026415
  31. 31. Dearnaley JDW, Martos F, Selosse M-A. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, editors. Fungal associations. The mycota IX, 2nd edn. Berlin, Germany: Springer-Verlag; 2012. pp.207–30 https://doi.org/10.1007/978-3-642-30826-0_12
  32. 32. Rasmussen HN. Recent developments in the study of orchid mycorrhiza. Plant Soil. 2002;244:149‒63. https://doi.org/10.1023/A:1020246715436
  33. 33. Beyrle HF, Smith SE, Peterson RL, Franco CMM. Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can J Bot. 1995;73:1128‒40. https://doi.org/10.1139/b95-123
  34. 34. Richardson KA, Currah RS, Hambleton SM. Basidiomycetous endophytes from the roots of neotropical epiphytic Orchidaceae. Lindleyana. 1993;8:127137.
  35. 35. Brundrett M. Co-evolution of roots and mycorrhizas of land plants. New Phytol. 2002; 167:335‒52.
  36. 36. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ. Changing partners in the dark: Isotopic and molecular evidence of mycorrhizal liaisons between forest orchids and trees. Proc Roy Soc B Biol Sci. 2004;271:1799–806. https://doi.org/10.1098/rspb.2004.2807
  37. 37. Brundrett M. Diversity and classifications of mycorrhizal associations. Biol Rev. 2004;79:473–95. https://doi.org/10.1017/S1464793103006316
  38. 38. Dycus AM, Knudson L. The role of velamen in the aerial roots of orchids. Bot Gaz.1957;199:78‒87. https://doi.org/10.1086/335966
  39. 39. Pridgeon AM. Anatomical adaptations in Orchidaceae. Lindleyana. 1986;1(2):90‒101.
  40. 40. Carlsward BS, Whitten WM, Williams NH, Bytebier B. Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am J Bot. 2006;93:770–86. https://doi.org/10.3732/ajb.93.5.770
  41. 41. Richardson F, Brodribb TJ, Jordan GJ. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiol. 2017;37:869‒78. https://doi.org/10.1093/treephys/tpx073
  42. 42. Buckley TN, John GP, Scoffoni C, Sack L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 2015;168:1616‒35. https://doi.org/10.1104/pp.15.00731
  43. 43. Dash PK, Sahoo S, Bal S. Ethnobotanical studies on orchids of Niyamgiri Hill Ranges, Orissa, India. Ethnobot Leaflet. 2008;12:70–78.
  44. 44. Ou JC, Hsieh WC et al (eds). The catalogue of medicinal plant resources in Taiwan. Department of Health, Executive Yuan, Taipei; 2003. 150
  45. 45. Hossain MM. Traditional therapeutic uses of some indigenous orchids of Bangladesh. Med Aro Plant Sci Biotech. 2009;3(1):101‒06.
  46. 46. Lavarack PS, Harris W, Stocker G. Dendrobium and its relatives. Timber Press, Portland, Oregon; 2000
  47. 47. Abraham CM, Chacko AS, Rajendran A, Johnson LA, Kumar S. Stomatal studies of epiphytic orchids. APJR. 2016;41(1):102‒05.
  48. 48. Das S, Paria N. Stomatal structure of some Indian orchids with reference to taxonomy. Bangladesh J Bot. 1992;21:65–72.

Downloads

Download data is not yet available.