Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Chemical constituents and pharmacological potential of Gmelina arborea Roxb. (Lamiaceae): A review

DOI
https://doi.org/10.14719/pst.3336
Submitted
6 February 2024
Published
20-12-2024 — Updated on 01-01-2025
Versions

Abstract

Gmelina arborea Roxb. has been widely used in traditional medicine and is considered a vital component of Brihatpanchamoolya. It is also commonly used in modern medicine due to its rich content of phytochemicals. The primary consitutents include lignans, flavonoids, tannins, glycosides and other bioactive compounds. Notably, the roots of Gmelina arborea contain glycosides, particulary flavone glycosides such as apigenin-7-rutinoside, luteolin-7-glucuronide, sitosterol, quercetin and apigenin. The leaves are rich in iridoid glycosides, flavonoids and sterols. The stem contains several lignans, including gmelanone, iso-arboreal, paulownin and gmelinol. Additionally, the flower contains verbascoside, a compound belonging to the class of iridoid glycosides. This species has diverse pharmaceutical applications, including anti-inflammatory properties. It also exhibits a wide range of beneficial effects, such as antioxidant, hepatoprotective, anticancer, neuroprotective, anti-tumour, cardioprotective, anticonvulsant and antihyperlipidemic activities. This study aims to bridge the gap between traditional knowledge and modern research by examining the pharmacological and phytochemical properties of G. arborea. A comprehensive review was conducted using well-known academic databases, including PubMed, Google Scholar and Science Direct. The findings were summarized and documented using bibliographic information, which may pay the way for future researcher in this area.

References

  1. Naji AK, Trivedi PG, Prajapati KV, Panchal MB, Sindhav GM. Evaluation of genetic diversity in Gmelina arborea Roxb. across different regions of Gujarat, India: The first report. Plant Mol Biol Report. 2024;1-1. https://doi.org/10.1007/s11105-024-01470-5
  2. Kumar KS, Khanduri VP, Tripathi SK. Reproductive adaptations and the availability of pollinating vectors in white Indian teak (Gmelina arborea Roxb.) in the tropical rain forest of Indo-Burma hotspot. Trees for People. 2021;3:100058. https://doi.org/10.1016/j.tfp.2020.100058
  3. Iwuoha SE, Seim W, Olaniran SO. Statistical distributions and their influence on the material property values of tropical timber: A case study of Gmelina arborea. Structures. 2023;53:205-13. https://doi.org/10.1016/j.istruc.2023.04.059
  4. Uzoh FC, Onukwuli DO. Extraction, analysis and desaturation of Gmelina seed oil using different soft computing approaches. South Afr J Chem Eng. 2016;22:6-16.
  5. https://doi.org/10.1016/j.sajce.2016.07.001
  6. El Sayed AM, El Hawary S, Elimam H, Saleh AM, Zokalih AH, Mohyeldin MM, et al. ESI- LC-MS/MS based comparative multivariate metabolomic and biological profiling with dynamic molecular docking of Gmelina arborea Roxb. different organs. Fitoterapia. 2023;168:105540.
  7. https://doi.org/10.1016/j.fitote.2023.105540
  8. Evans J, Turnbull JW. Plantation forestry in the tropics: The role, silviculture and use of planted forests for industrial, social, environmental and agroforestry purposes. Oxford University Press; 2004. https://doi.org/10.1093/oso/9780198529941.001.0001
  9. Nair AGR, Subramanian SS. Quercetagetin and other flavones from Gmelina arborea and G. asiatica. Phytochemistry. 1975;14(4):1135-36. https://doi.org/10.1016/0031-9422(75)85211-3
  10. Kubo M, Irimajiri R, Kawata M, Takahashi Y, Hayashi K, Matsuno M, et al. Prenylated-coumarins from G. arborea and evaluation for neurotrophic activity. Phytochemistry. 2023;213:113721. https://doi.org/10.1016/j.phytochem.2023.113721
  11. Ming Bai, Shi-Fang Li, Si-Fan Liu. Iridoid glycoside and lignans from a wild vegetable (Patrinia villosa Juss.) with antioxidant activity. J Food Biochem. 2018;42:12521.
  12. https://doi.org/10.1111/jfbc.12521
  13. Kawamura F, Ohara S. Antifungal activity of iridoid glycosides from the heartwood of Gmelina arborea. 2005;59(2):153-55. https://doi.org/10.1515/HF.2005.023
  14. Abdelwahed M, Hegazy M, Mohamed E. Major biochemical constituents of Withania somnifera (Ashwagandha) extract: A review of chemical analysis. Rev Anal Chem. 2023 Mar 29;42. https://doi.org/10.1515/revac-2022-0055
  15. Chothani DL, Patel NM. Preliminary phytochemical screening, pharmacognostic and physicochemical evaluation of leaf of Gmelina arborea. Asian Pac J Trop Biomed. 2012;2(3):S1333-37. https://doi.org/10.1016/S2221-1691(12)60411-0
  16. Rojas-Sandoval J. Gmelina arborea (Candahar). CABI; 2016 [cited 2024 Jun 30].
  17. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.25465
  18. Jaiswal YS, Williams LL. A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine. J Tradit Complement Med. 2016;7(1):50-53.
  19. https://doi.org/10.1016/j.jtcme.2016.02.002
  20. Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed. 2013;3(4):253-66. https://doi.org/10.1016/S2221-1691(13)60060-X
  21. Banu M, GMG. An overview on phytochemistry and pharmacological properties of Gmelina arborea. Docslib. 2013;3(4):62-71. https://doi.org/10.4103/2229-5119.110369
  22. Pathala D, AH, Hegde DPL. A review on Gambhari (Gmelina arborea Roxb.). J Pharmacogn Phytochem. 2015;4(2):127-32.
  23. Vedula S. Clinical evaluation of Dashmularishta (Ayurvedic formulation) in restoring normal health of postpartum females. J Res Tradit Med. 2016;2(3):56-61.
  24. https://doi.org/10.21276/jrtm.2016/106
  25. Arora C, Tamrakar V. Gmelina arborea: Chemical constituents, pharmacological activities and Applications. International Journal of Phytomedicine. 2017;9:528-42.
  26. https://doi.org/10.5138/09750185.2149
  27. Sharma PC, Yelne M, Dennis TJ. Database on medicinal plants used in Ayurveda. Government of ndia. Cent Counc Res Ayurveda Siddha. 2000;1(1):65-72.
  28. Arora C, Tamrakar V. Gmelina arborea: A bioprospective plant. Progress Agric. 2019;19:222.
  29. https://doi.org/10.5958/0976-4615.2019.00045.0
  30. Rastogi S. Quality of Ayurvedic health care delivery in provinces of India: Lessons from essential drugs availability at State run Ayurveda dispensaries. J-AIM. 2018;9(3):233-
  31. https://doi.org/10.1016/j.jaim.2018.01.004
  32. Anjaneyulu ASR, Rao KJ, Rao VK, Row LR, Subrahmanyam C, Pelter A, et al. The structures of lignans from Gmelina arborea Linn. Tetrahedron. 1975;31(10):1277-85.
  33. Warrier RR, Priya SM, Kalaiselvi R. Gmelina arborea– an indigenous timber species of India with high medicinal value: A review on its pharmacology, pharmacognosy and phytochemistry. J Ethnopharmacol. 2021;267:113593. https://doi.org/10.1016/j.jep.2020.113593
  34. Anjaneyulu ASR, Rao AM, Rao VK, Row LR, Pelter A, Ward RS. Novel hydroxy lignans from the heartwood of Gmelina arborea. Tetrahedron. 1977;33(1):133-43.
  35. https://doi.org/10.1016/0040-4020(77)80444-4
  36. Gribble GW. The diversity of naturally occurring organo bromine compounds. Chem Soc Rev. 1999;28(5):335-46. https://doi.org/10.1039/a900201d
  37. Satyanarayana P, Rao PK, Ward RS, Pelter A. Arborone and 7-oxo-dihydrogmelinol: Two new keto-lignans from Gmelina arborea. J Nat Prod. 1986;49(6):1061-64.
  38. https://doi.org/10.1021/np50048a014
  39. Whiting DA. Lignans, neolignans and related compounds. Nat Prod Rep. 1987;4(5):499-525. https://doi.org/10.1039/np9870400499
  40. Anjaneyulu AS, How LR, Subrahmanyam C. A new lignan from Gmelina arborea Linn. Tetrahedron Letters. 1972;13(22):2179-82.https://doi.org/10.1016/S0040-4039(01)84799-7
  41. Kawamura F, Ohara S, Nishida A. Antifungal activity of constituents from the heartwood of Gmelina arborea: Part 1. Sensitive antifungal assay against Basidiomycetes. Holzforschung. 2004;58(2):189-92. https://doi.org/10.1515/HF.2004.028
  42. Hosny M, Rosazza JP. Gmelinosides A-L, twelve acylated iridoid glycosides from Gmelina arborea. J Nat Prod. 1998;61(6):734-42. https://doi.org/10.1021/np970447u
  43. Dhakulkar S, Bhargava S, Ganapathi T. Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science. 2005;169(5):812-18.
  44. https://doi.org/10.1016/j.plantsci.2005.05.014
  45. Yadav AK, Tiwari N, Srivastava P, Singh SC, Shanker K, Verma RK, et al. Iridoid glycoside- based quantitative chromatographic fingerprint analysis: A rational approach for quality assessment of Indian medicinal plant Gambhari (Gmelina arborea). J Pharm Biomed Anal. 2008;47(4):841-46. https://doi.org/10.1016/j.jpba.2008.04.012
  46. Tiwari N, Yadav AK, Srivastava P, Shanker K, Verma RK, Gupta MM. Iridoid glycosides from Gmelina arborea. Phytochemistry. 2008;69(12):2387-90. https://doi.org/10.1016/j.phytochem.2008.06.016
  47. Gu W, Hao XJ, Liu HX, Wang YH, Long CL. Acylated iridoid glycosides and acylated rhamnopyranoses from Gmelina arborea flowers. Phytochem Lett. 2013;6(4):681-85.
  48. https://doi.org/10.1016/j.phytol.2013.08.016
  49. Madkour H. Antioxidant and cytotoxic activities of flavonoidal compounds from Gmelina arborea Roxb. Pol J Pharmacol. 2014;8:87-97. https://doi.org/10.5829/idosi.gjp.2014.8.1.82194
  50. N’gaman K, Kabran GRM, Kadja A, Janat Akhanovna MB, Pirat JL, Lecouvey M, et al. ULPC- MS/MS phenolic quantification and in vitro anticancer potential of Gmelina arborea Roxb. (Verbenaceae). Pelagia Res Libr. 2014;5(6):13-17.
  51. C NK, Kabran GRM, Kadja A, Janat Akhanovna MB, Pirat JL, Bekro YA. Phenolic phytoconstituents from Gmelina arborea leaves hydroacetonic crude extract: ULPC-MS/MS analysis. Chem Sin. 2016;7:1-4.
  52. Mestry D, Adhyapak S, Dighe V. High-performance liquid chromatographic method for quantization of apigenin from dried root powder of Gmelina arborea Linn. Int J Pharma Bio Sci. 2011;2(1):742-29.
  53. Shaikh H, Dighe V. High-performance liquid chromatographic method for simultaneous quantitation of luteolin and quercitin from dried whole plant powder of Gmelina arborea Roxb. and Kalanchoe pinnata (Lam.) Pers. Int J Sci Res. 2016;5(2):1820-24.
  54. https://doi.org/10.21275/v5i2.NOV161494
  55. Chandrasekharan S, Chinnasamy G, Bhatnagar S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci Rep. 2022;12(1):156. https://doi.org/10.1038/s41598-021-04025-w
  56. Nna PJ. Extraction and characterisation of steroidal compounds from Gmelina arborea stem bark for pharmaceutical applications. Int J Chem Chem Process. 2023;9(1):36-43.
  57. https://doi.org/10.56201/ijccp.v9.no1.2023.pg36.43
  58. Chauhan S, Bhupesh V, Patel B, Pandya P, Shukla V. Phytopharmacognostical investigation of Gmelina arborea (Roxb.) fruit. World J Pharm Sci. 2018;7(6):1599-605.
  59. https://doi.org/10.20959/wjpps20186-11868
  60. Adeyeye A. Composition of seed oils of (Gmelina arborea) and Teak (Tectona grandis). Pak J Sci Ind Res. 1991;39(4).
  61. Lewis JR. Muscarine, oxazole, imidazole, thiazole and peptide alkaloids and other miscellaneous alkaloids. Nat Prod Rep. 1994;11(4):395-418. https://doi.org/10.1039/np9941100395
  62. Barik BR, Bhowmik T, Dey AK, Patra A, Chatterjee A, Joy S, et al. Premnazole, an isoxazole alkaloid of Premna integrifolia and Gmelina arborea with anti-inflammatory activity. Fitoterapia. 1992;63(4):295-99. https://doi.org/10.1063/1.1142974
  63. Falah S, Katayama T, Suzuki T. Chemical constituents from Gmelina arborea bark and their antioxidant activity. J Wood Sci. 2008;54(6):483-89. https://doi.org/10.1007/s10086-008-0983-3
  64. Bukke SPN, Gali AK, Igbinoba SI, Garla V, Hussaini B, Goruntla N, et al. Anti-apoptotic and anti-inflammatory protective mechanisms of Gmelina arborea stem bark extract on ischemic reperfusion injury in albino Wistar rats. RPS Pharm Pharmacol Rep. 2024;rqae015. https://doi.org/10.1093/rpsppr/rqae015
  65. Gandigawad P, Poojar B, Hodlur N, Sori RK. Evaluation of the anti-inflammatory activity of ethanolic extract of Gmelina arborea in experimental acute and sub-acute inflammatory models in Wistar rats. Int J Basic Clin Pharmacol. 2018;8(1):128. https://doi.org/10.18203/2319-2003.ijbcp20185170
  66. Kaur S, Bedi PMS, Kaur N. Anti-inflammatory effect of methanolic extract of Gmelina arborea bark and its fractions against carrageenan-induced paw oedema in rats. Nat Prod Res. 2018;32(23):2861-64. https://doi.org/10.1080/14786419.2017.1385005
  67. Pandey AM, Kulkarni Y. Evaluation of antioxidant activity of Gmelina arborea extracts by in vitro techniques. Pharmacologyonline. 2010;2:805-11.
  68. Lawrence L, Menon S, Vincent S, Sivaram VP, Padikkala J. Radical scavenging and gastroprotective activity of methanolic extract of Gmelina arborea stem bark. J Ayurveda Integr Med. 2016;7(2):78-82. https://doi.org/10.1016/j.jaim.2016.06.003
  69. Abdulla S, Sakthivel S. Acute toxicity and in vivo hepatoprotective and nephroprotective methanol extract of Gmelina arborea and Grewia umbellifera Sakthivel. IOSR J Pharm Biol Sci. 2017;12(4):1-27. https://doi.org/10.9790/3008-1204030127
  70. Srinivasa C, Kumar SRS, Pradeep S, Prasad SK, Veerapur R, Ansari MA, et al. Eco-friendly synthesis of MnO2 nanorods using Gmelina arborea fruit extract and its anticancer potency against MCF-7 breast cancer cell line. Int J Nanomedicine. 2022;17:901-07. https://doi.org/10.2147/IJN.S335848
  71. Nify F. Study of in vitro cytotoxicity and in vivo anti-tumour and anti-inflammatory activities of Gmelina arborea Roxb. Stem Bark. 2014.
  72. Vijay T, Rajan MSD, Sarumathy K, Palani S, Sakthivel K. Cardioprotective, antioxidant activities and phytochemical analysis by GC-MS of Gmelina arborea (GA) in doxorubicin- induced myocardial necrosis in albino rats. J Appl Pharm Sci. 2011;1(5):198-204.
  73. Acharya NS, Acharya SR, Kumar V, Barai P. Anticonvulsant and antioxidant effects of methanol extract of stems of Gmelina arborea Roxb. J Nat Remedies. 2015;15(1):23.
  74. https://doi.org/10.18311/jnr/2015/469
  75. Punitha D, Thandavamoorthy A, Suresh SN, Uthaman, Udhayasankar M. Anti-hyperlipidemic effect of ethanolic leaf extract of Gmelina arborea in streptozotocin-induced male Wistar albino rats. Int J Lifescience Pharma Res. 2012;2(3):46-51.
  76. Panda SK, Das D, Tripthathy NK. Phytochemical investigation and anthelmintic activity of various root extracts of Gmelina arborea Roxb. 2015;5(1):54-58.
  77. Wadasinghe RR, Kalansuriya P, Attanayake AP. Development, characterization, in vitro antidiabetic activity of chitosan?tripolyphosphate nanoparticles encapsulating Gmelina arborea Roxb. and Spondias pinnata (L. f) Kurz aqueous extracts. Chemistry Select. 2023;8(48):e202302300. https://doi.org/10.1002/slct.202302300
  78. Attanayake AP, Jayatilaka KAPW, Pathirana C, Mudduwa LKB. Gmelina arborea Roxb. (Family: Verbenaceae) extract upregulates the ?-cell regeneration in STZ-induced diabetic rats. J Diabetes Res. 2016;2016(1):4513871. https://doi.org/10.1155/2016/4513871
  79. Shoeb H, Madkour HMF, Refahy LA, Mohamed MA, Saad AM, Ghareeb MA. Antioxidant and cytotoxic activities of Gmelina arborea Roxb. leaves. Br J Pharm Res. 2014;4(1):125-44.
  80. https://doi.org/10.9734/BJPR/2014/6018
  81. Prakashbabu B, Vijay D, George S, Kodiyil S, Nair S, Gopalan A, et al. Wound healing and anti-inflammatory activity of methanolic extract of Gmelina arborea and Hemigraphis colorata in rats. Int J Curr Microbiol Appl Sci. 2017;6:3116-22. https://doi.org/10.20546/ijcmas.2017.608.373
  82. Punitha D, Thandavamoorthy A, Arumugasamy K, Danya U, Udhayasankar M, Suresh SN. Potent in vitro cytotoxic effect of Gmelina arborea Roxb. (Verbenaceae) on three human cancer cell lines. Int J Pharma Sci Res. 2012;3(4):357-63.
  83. Merlin NJ, Parthasarathy V. Antioxidant and hepatoprotective activity of chloroform and ethanol extracts of Gmelina asiatica aerial parts. J Med Plants Res. 2011;5(4):533-38.
  84. Kolobani MN. Analysis of physicochemical and phytochemicals of Gmelina arborea Roxb. bark. CHMK Pharm Sci J. 2018;1(2).
  85. Kulkarni YA, Veeranjaneyulu A. Effects of Gmelina arborea extract on experimentally induced diabetes. Asian Pac J Trop Med. 2013;6(8):602-08. https://doi.org/10.1016/S1995-
  86. (13)60104-2
  87. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother. 2022;146:112560. https://doi.org/10.1016/j.biopha.2021.112560
  88. Zhang Y, Zhen W, Maechler P, Liu D. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic ?-cell survival and function via CREB. J Nutr Biochem. 2013;24(4):638-46. https://doi.org/10.1016/j.jnutbio.2012.03.008
  89. Suh KS, Oh S, Woo JT, Kim SW, Kim JW, Kim YS, et al. Apigenin attenuates 2-deoxy-D- ribose-induced oxidative cell damage in HIT-T15 pancreatic ?-cells. Biol Pharm Bull. 2012;35(1):121-26. https://doi.org/10.1248/bpb.35.121
  90. Kim JS, Kwon K, Son KH. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci Biochem. 2000;64(11):2458-61. https://doi.org/10.1271/bbb.64.2458
  91. Mou JF, Lin XZ, Su H ling, Lu HL, Liu QB, Liang B, et al. Anti-hepatitis B virus activity and hepatoprotective effect of des (rhamnosyl) verbascoside from Lindernia ruellioides in vitro. Phytother Res. 2021;35(8):4555-66. https://doi.org/10.1002/ptr.7159
  92. Hossen M, Uddin MB, Syed Sayeem Uddin A, Yu ZL, Cho J. Kaempferol biosynthesis, food sources and therapeutic uses. 2016;101-50.
  93. Zhang X, Wang J, Zhu L, Wang X, Meng F, Xia L, et al. Advances in stigmasterol on its anti- tumor effect and mechanism of action. Front Oncol. 2022;12:1101289.

Downloads

Download data is not yet available.