Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Molecular characterization for identifying the evolutionary lineage of Indonesia strawberry (Fragaria spp.) using DNA barcode markers: A review and current research on breeding strategies

DOI
https://doi.org/10.14719/pst.3345
Submitted
5 February 2024
Published
19-07-2025
Versions

Abstract

Fragaria spp. (Strawberry) is one of the most popular plant species, with a high economic and nutritional value. It also plays a key role in evolutionary biology, particularly due to its widespread cultivation in Indonesia, where diverse cultivars are imported from abroad. Understanding the evolutionary paths of these cultivars is essential for grasping their genetic diversity. This review aims to explore the evolutionary dynamics of strawberry species found in Indonesia using a DNA barcoding approach. DNA barcoding is a powerful tool for uncovering the complex evolutionary histories of species and revealing their phylogenetic relationships. In this comprehensive review, we discuss various cultivated strawberry species present in Indonesia and examine the evolutionary forces that have driven their diversification. By analyzing genetic evidence, we seek a deeper understanding of the evolutionary processes behind these cultivars. However, challenges remain, particularly for Fragaria species, which face increasingly threats from the introduction and spread of “alien species”. Addressing these challenges requires a holistic approach, that combines evolutionary biology principles with conservation strategies to protect native biodiversity while maximizing agricultural productivity. By enhancing our understanding of the evolutionary patterns and genetic evidence associated with cultivated strawberries in Indonesia, this review not only advances scientific knowledge but also provides a comparative phylogenetic tree of strawberry species in Indonesia. This serves as a foundation for informed conservation and breeding efforts in the constantly changing agricultural landscape.

References

  1. 1. Azizah UDL, Yulianti F, Adiredjo AL, Sitawati S. Genetic Relationship Analysis of Strawberry (Fragaria sp.) Germplasm Based on Morphology Character and Random Amplified Polymorphic DNA (RAPD). PLANTROPICA J Agric Sci. 2019;4(1):77–85. Available from: https://jpt.ub.ac.id/index.php/jpt/article/view/152.
  2. 2. Pramudhita DA, Azzahra F, Arfat K, Magdalena R, Saidah S. Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture. J Ilm Tek Elektro Komput dan Inform 2023;9(3):522–34.
  3. 3. Hanif Z, Ashari H. Sebaran Stroberi (Fragaria × ananassa) di Indonesia. Semin Nas Pekan Inov Teknol Hortik Nas Penerapan Inov Teknol Hortik dalam Mendukung Pembang Hortik yang Berdaya Saing dan Berbas Sumber Daya Genet Lokal Teknol Hortik Nas Penerapan I. 2013;(May):87–95.
  4. 4. Dwiastuti ME, Soesanto L, Aji TG, Devy NF, Hardiyanto. Biological control strategy for postharvest diseases of citrus, apples, grapes and strawberries fruits and application in Indonesia. Egypt J Biol Pest Control. 2021;31(1):141. https://doi.org/10.1186/s41938-021-00488-1.
  5. 5. Balasooriya HN, Dassanayake KB, Seneweera S, Ajlouni S. Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield. International Journal of Agricultural and Biosystems Engineering. 2018;12(9):279-287.
  6. 6. Suminarti NE, Sebayang HT, Maghfoer MD, Bulan B. Effect of para-net shade level on plant microenvironment, growth, and yield of three strawberry varieties. Biodiversitas J Biol Divers. 2023 May 5;24(4):2149–55. Available from: https://smujo.id/biodiv/article/view/13267.
  7. 7. Haqiqi I, Damanhuri, Kendarini N, Agisimanto D. Studi Keberhasilan Persilangan Stroberi (Fragaria × ananassa Duch). J Produksi Tanam. 2015;3(2):107–12.
  8. 8. Zareei E, Karami F, Aryal R, Saed-Moucheshi A. Genotypic by phenotypic interaction affects the heritability and relationship among quantity and quality traits of strawberry (Fragaria × ananassa). New Zeal J Crop Hortic Sci. 2022 Feb 20;1–20. Available from: https://doi.org/10.1080/01140671.2022.2039725.
  9. 9. Liston A, Cronn R, Ashman T. Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. Am J Bot. 2014;101(10):1686–99. Available from: https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.1400140.
  10. 10. Hummer KE, Hancock J. Plant Genetics and Genomics: Crops and Models. New York (United States of America): Springer. 2009. Available from: https://doi.org/10.1007/978-0-387-77491-6.
  11. 11. Hummer KE, Nathewet P, Yanagi T . Decaploidy in Fragaria iturupensis (Rosaceae). American Journal of Botany. 2012; 96:713 – 716.
  12. 12. Rahayu DA, Jannah M. DNA Barcode Hewan dan Tumbuhan Indonesia. 2019: 9–25.
  13. 13. Kim H, Margie L. Global Conservation Strategy for Fragaria (Strawberry). Scr Hortic. 2008;(March):83. ISBN 978 90 6605 129 4.
  14. 14. Kurniasih MD. Menumbuhkan Karakter Konservasi Biodiversitas Melalui Penerapan Species Identification and Response Software. Edu Sains J Pendidik Sains Mat. 2018;6(2):30.
  15. 15. Kasiamdari RS, Aristya GR, Inayati E. Phylogenetic Relationships of Nine Cultivars of Strawberries (Fragaria spp.) Based on Anatomical and Morphological Characters. Planta Trop J Agro Sci. 2017;5(2):116–26.
  16. 16. Oktarina DO. Pertumbuhan Dan Produksi Stroberi (Fragaria sp.) dengan Pemberian Berbagai Konsentrasi Pupuk Organik Cair (POC) Secara Hidroponik Substrat. JOM F. 2017;4(1):1–12.
  17. 17. Sudiarta IP, Ngurah G, Susanta A, Gede D, Selangga W, Getas M, et al. Detection of Strawberry vein banding virus (SVBV) and Identification of Viruliferous Insects Associated with Strawberry Plants (Fragaria sp.) in Bali. J Perlindungan Tanam Indonesia. 2021;25(2):121–6.
  18. 18. Sánchez-Sevilla JF, Vallarino JG, Osorio S, Bombarely A, Posé D, Merchante C, et al. Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Sci Rep. 2017;7(1):1–13.
  19. 19. Sargent DJ, Fernandéz-Fernandéz F, Ruiz-Roja JJ, Sutherland BG, Passey A, Whitehouse AB, et al. A genetic linkage map of the cultivated strawberry (Fragaria × ananassa) and its comparison to the diploid Fragaria reference map. Mol Breed. 2009 Oct 19;24(3):293–303. Available from: http://link.springer.com/10.1007/s11032-009-9292-9.
  20. 20. Staudt G. Strawberry Biogeography, Genetics and Systematics. Proc. VIth Internat. Strawberry Symposium. 2009:71-84.
  21. 21. Song Y, Li C, Liu L, Hu P, Li G, Zhao X, Zhou H. The Population Genomic Analyses of Chloroplast Genomes Shed New Insight on The Complicated Ploidy and Evolutionary History in Fragaria. Front. Plant Sci. 2023 Feb 15;13:1065218. Available from: https://doi.org/10.3389/fpls.2022.1065218.
  22. 22. Potter D, Luby JJ, Harrison RE. Phylogenetic Relationships among Species of Fragaria (Rosaceae) Inferred from Non-Coding Nuclear and Chloroplast DNA Sequences. Syst Bot. 2000 Apr;25(2):337. Available from: https://www.jstor.org/stable/2666646?origin=crossref.
  23. 23. Saroinsong D, Panelewen VVJ, Laoh OEH, Pakasi CBD. Agribisnis Tanaman Stroberi Di Desa Rurukan Kecamatan Tomohon Timur. Eugenia. 2012 Dec 18;18(3). Available from: https://ejournal.unsrat.ac.id/index.php/eugenia/article/view/4099.
  24. 24. Post NW, Gilbert, CC, Pugh KD, Mogle CS. Implication of Outgroup Selection in The Phylogenetic Inference of Humanoids and Fossil Hommins. Journal of Human Evolution. 2023;184(103437).
  25. 25. Buti M, Moretto M, Barghini E, Mascagni F, Natali L, Brilli M, et al. The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience. 2018 Apr 1;7(4):1–14. Available from: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giy010/4860432.
  26. 26. Wolfgang A, Zachow C, Müller H, Grand A, Temme N, Tilcher R, et al. Understanding the Impact of Cultivar, Seed Origin, and Substrate on Bacterial Diversity of the Sugar Beet Rhizosphere and Suppression of Soil-Borne Pathogens. Front Plant Sci. 2020 Sep 30;11(September):1–15. Available from: https://www.frontiersin.org/article/10.3389/fpls.2020.560869/full.
  27. 27. Qarni A, Muhammad K, Wahab A, Ali A, Khizar C, Ullah I, et al. Molecular Characterization of Wild and Cultivated Strawberry (Fragaria × ananassa) through DNA Barcode Markers. Hesham AEL, editor. Genet Res (Camb). 2022 Oct 11;2022:1–14. Available from: https://www.hindawi.com/journals/gr/2022/9249561/.
  28. 28. Gostel MR, Kress WJ. The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation. Diversity. 2022;14(213):1–23.
  29. 29. Kramer A, Havens K. Plant conservation genetics in a changing world. Trends Plant Sci. 2009;14;11: 599–607.
  30. 30. Turhadi T, Hakim L. Evaluasi Lokus Kloroplas untuk DNA Barcoding pada Marga Stelechocarpus (Annonaceae) Secara In-Silico. Agro Bali Agric J. 2023 May 12;6(1):56–64. Available from: https://ejournal.unipas.ac.id/index.php/Agro/article/view/1105.
  31. 31. Li C, Cai C, Tao Y, Sun Z, Jiang M, Chen L, et al. Variation and Evolution of the Whole Chloroplast Genomes of Fragaria spp. (Rosaceae). Front Plant Sci. 2021;12(October).
  32. 32. Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, et al. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106(31):12794–7.
  33. 33. Pfenninger M, Cordellier M, Streit B. Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol Biol. 2006;6:1–14.
  34. 34. Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, et al. Phylogeny and classification of Rosaceae. Plant Syst Evol. 2007 Jul 28;266(1–2):5–43. Available from: http://link.springer.com/10.1007/s00606-007-0539-9.
  35. 35. Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S. Applying plant DNA barcodes for Rosaceae species identification. Cladistics. 2011 Apr;27(2):165–70. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.2010.00328.x.
  36. 36. Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc London Ser B Biol Sci. 2003 Feb 7;270(1512):313–21. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2002.2218.
  37. 37. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R. Towards writing the encyclopaedia of life: An introduction to DNA barcoding. Philos Trans R Soc B Biol Sci. 2005;360(1462):1805–11.
  38. 38. Stoeckle M. The Barcode of Life. Bioscience. 2003;53(9):2–3.
  39. 39. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004;2(10):1657–63.
  40. 40. Gallal-Khallal A, Abdelbaset-Donya A, Hamza W, Mohammed-Geba K. Molecular tools for assuring human health and environment-friendly frozen shellfish products in the United Arab Emirates markets. Food Chemistry: Molecular Sciences. 2021;3:1-9. Available from: https://doi.org/10.1016/j.fochms.2021.100028.
  41. 41. Friedheim S. Comparison of SpeciesIdentification Methods: DNA Barcoding versus Morphological Taxonomy. Manoa Horizons. 2016;1(1):74–86.
  42. 42. Frézal L, Leblois R. Four years of DNA barcoding: Current advances and prospects. Infect Genet Evol. 2008 Sep;8(5):727–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567134808001238.
  43. 43. Farooq Q, Shakir M, Ejaz F, Zafar T, Durrani K, Ullah A. Role of DNA Barcoding in Plant Biodiversity Conservation. Sch Int J Biochem. 2020 Mar 25;03(03):48–52. Available from: https://saudijournals.com/media/articles/SIJB_33_48-52.pdf.
  44. 44. Hollingsworth PM. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A. 2011;108(49):19451–2.
  45. 45. Kress WJ, Erickson DL. DNA barcodes: Genes, genomics, and bioinformatics. Proc Natl Acad Sci. 2008 Feb 26;105(8):2761–2. Available from: https://pnas.org/doi/full/10.1073/pnas.0800476105.
  46. 46. Badotti F, de Oliveira FS, Garcia CF, Vaz ABM, Fonseca PLC, Nahum LA, et al. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol. 2017 Dec 23;17(1):42. Available from: http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-017-0958-x.
  47. 47. Sun J, Sun R, Liu H, Chang L, Li S, Zhao M, et al. Complete chloroplast genome sequencing of ten wild Fragaria species in China provides evidence for phylogenetic evolution of Fragaria. Genomics. 2021 May;113(3):1170–9. Available from: https://doi.org/10.1016/j.ygeno.2021.01.027.
  48. 48. Lestari R. Identification and assessment of invasive plant species at Bogor Botanic Gardens, Indonesia. IOP Conf Ser Earth Environ Sci. 2021;800(1).
  49. 49. Langmaier M, Lapin K. A Systematic Review of the Impact of Invasive Alien Plants on Forest Regeneration in European Temperate Forests. Front Plant Sci. 2020;11(September):1–15.
  50. 50. Davis MA, Thompson K. Eight Ways to Be a Colonizer; Two Ways to Be an Invader: A Proposed Nomenclature Scheme for Invasion Ecology. Bulletin of the Ecological Society of America. 2000;81;3: 226–230. https://www.jstor.org/stable/20168448?origin=crossref.
  51. 51. Thielecke L, Aranyossy T, Dahl A, Tiwari R, Roeder I, Geiger H, et al. Limitations and challenges of genetic barcode quantification. Sci Rep. 2017 Mar 3;7(1):43249. Available from: https://www.nature.com/articles/srep43249.
  52. 52. Raclariu AC, Heinrich M, Ichim MC, de Boer H. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication. Phytochem Anal. 2018;29(2):123–8.
  53. 53. Njuguna W. DNA Barcoding: Unsuccessful for Species Identification in Fragaria L. Plant Genet Resour. 2011;349–56.
  54. 54. Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM, Blomberg SP, et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc Natl Acad Sci. 2020 Feb 25;117(8):4218–27. Available from: https://pnas.org/doi/full/10.1073/pnas.1915848117.
  55. 55. Schulze J, Stoll P, Widmer A, Erhardt A. Searching for gene flow from cultivated to wild strawberries in Central Europe. Ann Bot. 2011;107(4):699–707.
  56. 56. Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6(5).
  57. 57. Agrios G. Plant pathology. 5th Edition. Amsterdam (Netherlands): Elsevier Academic Press;2005.
  58. 58. Devi MP, Dasgupta M, Mohanty S, Sharma SK, Hegde V, Roy SS, et al. DNA Barcoding and ITS2 Secondary Structure Predictions in Taro (Colocasia esculenta L. Schott) from the Northeastern Hill Region of India. Genes (Basel). 2022;13(12):1–13. Available from: https://www.mdpi.com/2073-4425/13/12/2294?type=check_update&version=1#.
  59. 59. Cowan RS, Fay MF. Challenges in the DNA Barcoding of Plant Material. In: Sucher N, Hennell J, Carles M, editors. Methods in Molecular Biology. Humana Press; 2012 [cited 2023 Des 9]:23–33. https://doi.org/10.1007/978-1-61779-609-8_3.
  60. 60. Li Y, Pi M, Gao Q, Liu Z. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic Res. 2019;6(61):1–9. Available from: http://dx.doi.org/10.1038/s41438-019-0142-6.
  61. 61. Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. Properties of different selection signature statistics and a new strategy for combining them. Heredity (Edinb). 2015;115(5):426–36.
  62. 62. Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep. 2017;7(September):1–9. Available from: http://dx.doi.org/10.1038/s41598-017-13057-0.
  63. 63. Gostel MR, Kress WJ. The expanding role of DNA Barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity. 2022;14(213):1–23.

Downloads

Download data is not yet available.