Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Bacterial community present in the earthworm’s gut and its role in soil biology and health

DOI
https://doi.org/10.14719/pst.3356
Submitted
8 February 2024
Published
03-12-2024 — Updated on 01-01-2025
Versions

Abstract

Earthworms are known as ecological engineers due to their significant role in enhancing soil health and productivity. Various factors such as temperature, moisture, acidity, pH, sunlight and the availability of organic matter influence their presence in soil. Earthworms exhibit diverse feeding and burrowing behaviors, which lead to crucial ecological processes within terrestrial ecosystems. Their interactions with soil result in the colonization of their gut and surrounding soil by diverse bacterial communities, including key species such as Escherichia coli, Streptomyces, Bacillus and Pseudomonas. These bacteria aid in the digestion of organic and inorganic matter, thereby altering soil physio-chemical properties and enhancing nutrient mineralization, which promotes plant growth. Additionally, earthworms influence nutrient cycling by modifying microbial soil populations and the bacterial communities in their gut and adjacent soil contribute to phytoremediation. This review delves into the types of bacterial populations found in the earthworm’s gut and surrounding soil, elucidating their specific roles and contributions to the terrestrial ecosystem. By understanding these complex interactions, we can better appreciate the vital role earthworms and their associated bacterial communities play in soil biology. This knowledge is essential for developing sustainable agricultural practices and improving soil management strategies, ultimately contributing to healthier and more productive ecosystems.

References

  1. Rasheed M. A comprehensive review on effects of soil pollutants on Pheretima spp. of earthworm. Life Science Journal. 2024;21:3. doi:10.7537/marslsj210324.04.
  2. Huang C, Ge Y, Yue S, Qiao Y, Liu L. Impact of soil metals on earthworm communities from the perspectives of earthworm ecotypes and metal bioaccumulation. Journal of Hazardous Materials. 2021;406:124738. https://doi.org/10.1016/j.jhazmat.2020.124738
  3. Drake HL, Schramm A, Horn MA. Earthworm gut microbial biomes: their importance to soil microorganisms, denitrification and the terrestrial production of the greenhouse gas N2O. Intestinal Microorganisms of Termites and Other Invertebrates. 2006;65-87. https://doi.org/10.1007/3-540-28185-1_3
  4. Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, et al. Earthworms building up soil microbiota, a review. Frontiers in Environmental Science. 2019 Jun 7;7:81. https://doi.org/10.3389/fenvs.2019.00081
  5. Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F. Ecological role of earthworm intestinal bacteria in terrestrial environments: a review. Science of the Total Environment. 2020 Oct 20;740:140008. https://doi.org/10.1016/j.scitotenv.2020.140008
  6. Capowiez Y, Cadoux S, Bouchant P, Ruy S, Roger-Estrade J, Richard G, Boizard H. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil and Tillage Research. 2009;105(2):pp.209-16. https://doi.org/10.1016/j.still.2009.09.002
  7. Kamau S, Barrios E, Karanja NK, Ayuke FO, Lehmann J. Dominant tree species and earthworms affect soil aggregation and carbon content along a soil degradation gradient in an agricultural landscape. Geoderma. 2020;359:113983. https://doi.org/10.1016/j.geoderma.2019.113983
  8. Aira M, Olcina J, Pérez-Losada M, Domínguez J. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates. Applied Soil Ecology. 2016 Feb 1;98:103-11. https://doi.org/10.10.1016/j.apsoil.2015.10.002
  9. Jirout J, Pižl V. Effects of the endemic earthworm Allolobophora hrabei on soil microbial communities of steppe grasslands. Soil Biology and Biochemistry. 2014 Sep 1;76:249-56. https://doi.org/10.1016/j.soilbio.2014.05.020
  10. Drake HL, Horn MA. As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol. 2007 Oct 13;61:169-89. https://doi.org/10.1146/annurev.micro.61.080706.093139
  11. Hoang DT, Razavi BS, Kuzyakov Y, Blagodatskaya E. Earthworm burrows: kinetics and spatial distribution of enzymes of C-, N-and P-cycles. Soil Biology and Biochemistry. 2016 Aug 1;99:94-103. https://doi.org/10.1016/j.soilbio.2016.04.021
  12. Liu D, Lian B, Wang B. Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm’s gut. Acta Geochimica. 2016 Sep;35:262-70. https://doi.org/10.1007/s11631-016-0106-6
  13. Zhou GW, Yang XR, Sun AQ, Li H, Lassen SB, Zheng BX, Zhu YG. Mobile incubator for iron (III) reduction in the gut of the soil-feeding earthworm Pheretima guillelmi and interaction with denitrification. Environmental Science and Technology. 2019 Mar 18;53(8):4215-23. https://doi.org/10.1021/acs.est.8b06187
  14. Starke R, Capek P, Morais D, Callister SJ, Jehmlich N. The total microbiome functions in bacteria and fungi. Journal of Proteomics. 2020 Feb 20;213:103623. http://doi.org/10.1016/j.jprot.2019.103623
  15. Horn MA, Drake HL, Schramm A. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Applied and Environmental Microbiology. 2006 Feb;72(2):1019-26. https://doi.org/10.1128/AEM.722.1019-1026.2006
  16. Wang HT, Ding J, Xiong C, Zhu D, Li G, Jia XY, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution. 2019 Aug 1;251:110-16. https://doi.org/j.envpol.2019.04.054
  17. Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB. Plant growth-promoting microorganisms for environmental sustainability. Trends in Biotechnology. 2016 Nov 1;34(11):847-50. https://doi.org/10.1016/j.tibtech.2016.05.005
  18. Wu F, Wan JH, Wu S, Wong M. Effects of earthworms and plant growth–promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus and potassium in soil. Journal of Plant Nutrition and Soil Science. 2012 Jun;175(3):423-33. https://doi.org/10.1002/jpln.201100022
  19. Chao H, Kong L, Zhang H, Sun M, Ye M, Huang D, et al. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes. Science of the Total Environment. 2019 Jun 15;669:353-61. https://doi.org/10.1016/j.scitotenv.2019.03.017
  20. Wu Y, Shaaban M, Zhao J, Hao R, Hu R. Effect of the earthworm gut-stimulated denitrifiers on soil nitrous oxide emissions. European Journal of Soil Biology. 2015 Sep 1;70:104-10. https://doi.org/10.1016/j.ejsobi.2015.08.001
  21. Tereshchenko NN, Naplekova NN. Influence of different ecological groups of earthworms on the intensity of nitrogen fixation. Biology Bulletin of the Russian Academy of Sciences. 2002 Nov;29:628-32. https://doi.org/10.1023/A:1021736513412
  22. Valle-Molinares R, Borges S, Rios-Velazquez C. Characterization of possible symbionts in Onychochaeta borincana (Annelida: Glossoscolecidae). European Journal of Soil Biology. 2007 Nov 1;43:S14-18. https://doi.org/10.1016/j.ejsobi.2007.08.057
  23. Byzov BA, Khomyakov NV, Kharin SA, Kurakov AV. Fate of soil bacteria and fungi in the gut of earthworms. European Journal of Soil Biology. 2007 Nov 1;43:S149-56. https://doi.org/10.1016/j.ejsobi.2007.08.012
  24. Pass DA, Morgan AJ, Read DS, Field D, Weightman AJ, Kille P. The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environmental Microbiology. 2015 Jun;17(6):1884-96. https://doi.org/10.1111/1462-2920.12712
  25. Hong SW, Kim IS, Lee JS, Chung KS. Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community structure from the intestinal tracts of earthworms (Eisenia fetida). Journal of Microbiology and Biotechnology. 2011;21(9):885-92. https://doi.org/10.4014/jmb.1009.09041
  26. Shipitalo MJ, Le Bayon RC. Quantifying the effects of earthworms on soil aggregation and porosity. Earthworm Ecology. CRC Press. 2004 Mar 29;pp. 183-200. https://doi.org/10.1201/9781420039719.pt5
  27. Knapp BA, Podmirseg SM, Seeber J, Meyer E, Insam H. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology and Biochemistry. 2009 Nov 1;41(11):2299-307. https://doi.org/10.1016/j.soilbio.2009.08.011
  28. Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, Lei C. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresource Technology. 2017 Dec 1;245:411-18. https://doi.org/10.1016/j.biortech.2017.08.118
  29. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, et al. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology. 2012 Oct 15;78(20):7398-406. https://doi.org/10.1128/AEM.01325-12
  30. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology. 2005 May;55(3):1255-65. https://doi.org/10.1099/ijs.0.63484-0
  31. Wan JH, Wong MH. Effects of earthworm activity and P?solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science. 2004 Apr;167(2):209-13. https://doi.org/10.1002/jpln.200321252
  32. Su?owicz S, P?ociniczak T, Piotrowska-Seget Z, Kozdrój J. Significance of silver birch and bushgrass for establishment of microbial heterotrophic community in a metal-mine spoil heap. Water, Air and Soil Pollution. 2011 Jan;214:205-18. https://doi.org/10.1007/s11270-010-0417
  33. Giotta L, Agostiano A, Italiano F, Milano F, Trotta M. Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere. 2006 Mar 1;62(9):1490-99. https://doi.org/10.1016/j.chemosphere.2005.06.014
  34. Koubová A, Chro?áková A, Pižl V, Sánchez-Monedero MA, Elhottová D. The effects of earthworms Eisenia spp. on microbial community are habitat dependent. European Journal of Soil Biology. 2015 May 1;68:42-55. https://doi.org/10.1016/j.ejsobi.2015.03.004
  35. Villar I, Alves D, Pérez-Díaz D, Mato S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Management. 2016 Feb 1;48:409-17. http://doi.org/10.1016/j.wasman.2015.10.011
  36. Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP. Soil contamination in China: current status and mitigation strategies. Environmental Science and Technology. 2015 Jan 20;49(2):750-59. https://doi.org/10.1021/es5047099
  37. Bhat SA, Singh S, Singh J, Kumar S, Vig AP. Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology. 2018 Mar 1;252:172-79. https://doi.org/10.1016/j.biortech.2018.01.003
  38. Shaw LP, Bassam H, Barnes CP, Walker AS, Klein N, Balloux F. Modelling microbiome recovery after antibiotics using a stability landscape framework. The ISME Journal. 2019 Jul;13(7):1845-56. https://doi.org/10.1038/s41396-019-0392-1
  39. Ma J, Zhu D, Sheng GD, O'Connor P, Zhu YG. Soil oxytetracycline exposure alters the microbial community and enhances the abundance of antibiotic resistance genes in the gut of Enchytraeus crypticus. Science of the Total Environment. 2019 Jul 10;673:357-66. https://doi.org/10.1016/j.scitotenv.2019.04.103
  40. Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid MU, et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio. 2015 Dec 31;6(6):10-128. https://doi.org/10.1128/mbio.01693-15
  41. Banfield JF, Barker WW, Welch SA, Taunton A. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences. 1999 Mar 30;96(7):3404-11. https://doi.org/10.1073/pnas.96.7.3404
  42. Rawlings DE. Heavy metal mining using microbes. Annual Reviews in Microbiology. 2002 Oct;56(1):65-91. https://doi.org/10.1146/annurev.micro.56.012302.161052
  43. Sánchez-Monedero MA, Roig A, Paredes C, Bernal MP. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology. 2001 Jul 1;78(3):301-08. https://doiorg/10.1016/S0960-8524(01)00031-1
  44. Le Bayon RC, Bullinger G, Schomburg A, Turberg P, Brunner P, Schlaepfer R, Guenat C. Earthworms, plants and soils. Hydrogeology, Chemical Weathering and Soil Formation. 2021 Jan 21;81-103. https://doi.org/10.1002/9781119563952.ch4
  45. Rizhiya E, Bertora C, van Vliet PC, Kuikman PJ, Faber JH, van Groenigen JW. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biology and Biochemistry. 2007 Aug 1;39(8):2058-69. https://doi.org/10.1016/S0038-0717(96)00042-9
  46. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, et al. A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science. 2013 Apr;64(2):161-82. https://doi.org/10.1111/ejss.12025
  47. Laossi KR, Decäens T, Jouquet P, Barot S. Can we predict how earthworm effects on plant growth vary with soil properties?. Applied and Environmental Soil Science. 2010 Jan 1;2010. https://doi.org/10.1007/s11104-009-0086-y
  48. Lapied E, Nahmani J, Rousseau GX. Influence of texture and amendments on soil properties and earthworm communities. Applied Soil Ecology. 2009 Oct 1;43(2-3):241-49. https://doi.org/10.1016/j.apsoil.2009.08.004
  49. Kumar R, Sharma P, Gupta RK, Kumar S, Sharma MM, Singh S, Pradhan G. Earthworms for eco-friendly resource efficient agriculture. Resources Use Efficiency in Agriculture. 2020;47-84. https://doi.org/10.1007/978-981-15-6953-1_2
  50. Shen LD, Liu S, Lou LP, Liu WP, Xu XY, Zheng P, Hu BL. Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in Chinese agricultural soils. Applied and Environmental Microbiology. 2013 Oct 1;79(19):6167-72. https://doi.org/10.1128/AEM.00884-13
  51. del Rosario Cappellari L, Santoro MV, Nievas F, Giordano W, Banchio E. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Applied Soil Ecology. 2013 Aug 1;70:16-22. https://doi.org/10.1016/j.apsoil.2013.04.001
  52. Kumar B, Trivedi P, Pandey A. Pseudomonas corrugata: A suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biology and Biochemistry. 2007 Dec 1;39(12):3093-100. https://doi.org/10.1016/j.soilbio.2007.07.003
  53. Ponmurugan P, Gopi C. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology. 2006;5(4):348-50.
  54. Singh A, Karmegam N, Singh GS, Bhadauria T, Chang SW, Awasthi MK, et al. Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environmental Geochemistry and Health. 2020 Jun;42:1617-42. https://doi.org/10.1007/s10653-019-00510-4
  55. Dudeja SS, AL K. Effect of Rhizobium and phosphomicroorganisms on yield and nutrient uptake in chickpea.
  56. Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere. 2006 Aug 1;64(6):991-97. https://doi.org/10.1016/j.chemosphere.2005.12.057
  57. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews. 2000 Oct 1;24(4):487-506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  58. Buckalew DW, Riley RK, Yoder WA, Vail WJ. Invertebrates as vectors of endomycorrhizal fungi and Rhizobium upon surface mine soils. West Virginia Acad Sci Proc. 1982;54(1):73-76.
  59. Pokarzhevskii AD, Gordienko SA, Krivolutskii DA. Biological factors in the circulation of matter in terrestrial ecosystems. Sov J Ecol. (Engl. Transl.) (United States). 1984 Jul 1;15(6).
  60. Lavelle P, Spain A, Blouin M, Brown G, Decaëns T, Grimaldi M, et al. Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science. 2016 Mar 1;181(3/4):91-109. https://10.1097/SS.0000000000000155
  61. Ladygina N, Johansson T, Canbäck B, Tunlid A, Hedlund K. Diversity of bacteria associated with grassland soil nematodes of different feeding groups. FEMS Microbiology Ecology. 2009 Jul 1;69(1):53-61. https://doi.org/10.1111/j.1574-6941.2009.00687.x
  62. Bonkowski M, Schaefer M. Interactions between earthworms and soil protozoa: a trophic component in the soil food web. Soil Biology and Biochemistry. 1997 Mar 1;29(3-4):499-502. https://doi.org/10.1016/S0038-0717(96)00107-1
  63. Fischer K, Hahn D, Daniel O, Zeyer J, Amann RI. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Canadian Journal of Microbiology. 1995 Aug 1;41(8):666-73. https://doi.org/10.1139/m95-092
  64. Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiology Ecology. 2004 May 1;48(2):187-97. https://doi.org/10.1016/j.femsec.2004.01.007
  65. Elyamine AM, Afzal J, Rana MS, Imran M, Cai M, Hu C. Phenanthrene mitigates cadmium toxicity in earthworms Eisenia fetida (epigeic specie) and Aporrectodea caliginosa (endogeic specie) in soil. International Journal of Environmental Research and Public Health. 2018 Nov;15(11):2384. https://doi.org/10.3390/ijerph15112384
  66. Andriuzzi WS, Ngo PT, Geisen S, Keith AM, Dumack K, Bolger T, et al. Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biology and Fertility of Soils. 2016 Jan;52:91-100. https://doi.org/10.1007/s00374-015-1056-6
  67. Le Bayon RC, Bullinger-Weber G, Schomburg A, Turberg P, Schlaepfer R, Guenat C. Earthworms as ecosystem engineers: A review. Earthworms: Types, Roles and Research. 2017:129-78. https://doi.org/10.1007/s00374-015-1056-6
  68. Lavelle P, Charpentier F, Villenave C, Rossi JP, Derouard L, Pashanasi B, et al. Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. Earthworm Ecology. CRC press. 2004 Mar 29; pp. 145-60. https://doi.org/10.1201/9781420039719.pt4
  69. Curry JP, Schmidt O. The feeding ecology of earthworms–a review. Pedobiologia. 2007 Jan 4;50(6):463-77. https://doi.org/10.1016/j.pedobi.2006.09.001
  70. Braga LP, Yoshiura CA, Borges CD, Horn MA, Brown GG, Drake HL, Tsai SM. Disentangling the influence of earthworms in sugarcane rhizosphere. Scientific Reports. 2016 Dec 15;6(1):38923. https://doi.org/10.1038/srep38923
  71. De Menezes AB, Prendergast-Miller MT, Macdonald LM, Toscas P, Baker G, Farrell M, et al. Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiology Ecology. 2018 May;94(5):fiy051. https://doi.org/10.1093/femsec/fiy051
  72. Hoeffner K, Monard C, Santonja M, Cluzeau D. Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biology and Biochemistry. 2018 Oct 1;125:1-9. https://doi.org/10.1016/j.soilbio.2018.06.017
  73. Gopal M, Bhute SS, Gupta A, Prabhu SR, Thomas GV, Whitman WB, Jangid K. Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Van Leeuwenhoek. 2017 Oct;110:1339-55. https://doi.org/10.1007/s10482-017-0894-7
  74. Bernard L, Chapuis-Lardy L, Razafimbelo T, Razafindrakoto M, Pablo AL, Legname E, et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. The ISME Journal. 2012 Jan;6(1):213-22. https://doi.org/10.1038/ismej.2011.87
  75. Abail Z, Sampedro L, Whalen JK. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Applied Soil Ecology. 2017 Aug 1;116:79-86. https://doi.org/10.1016/j.apsoil.2017.02.022
  76. Sharpley AN, Smith SJ, Jones OR, Berg WA, Coleman GA. The transport of bioavailable phosphorus in agricultural runoff. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America. 1992 Jan. https://doi.org/10.2134/jeq1992.00472425002100010003x
  77. Kiyasudeen SK, Ibrahim MH, Quaik S, Ahmed Ismail S, S KK, Ibrahim MH, et al. Important digestive enzymes of earthworm. Prospects of Organic Waste Management and the Significance of Earthworms. 2016;105-22. https://doi.org/10.1007/978-3-319-24708-3_5
  78. Ihssen J, Horn MA, Matthies C, Go?ßner A, Schramm A, Drake HL. N2O-producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Applied and Environmental Microbiology. 2003 Mar;69(3):1655-61. https://doi.org/10.1128/AEM.69.3.1655-1661.2003
  79. Snyder BA, Callaham MA, Hendrix PF. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biological Invasions. 2011 Feb;13:349-58. https://doi.org/10.1007/s10530-010-9826-4
  80. Dobson AM, Blossey B, Richardson JB. Invasive earthworms change nutrient availability and uptake by forest understory plants. Plant and Soil. 2017 Dec;421:175-90. https://doi.org/10.1007/s11104-017-3412-9
  81. Li X, Fisk MC, Fahey TJ, Bohlen PJ. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biology and Biochemistry. 2002 Dec 1;34(12):1929-37. https://doi.org/10.1016/S0038-0717(02)00210-9
  82. Wang N, Wang W, Jiang Y, Dai W, Li P, Yao D, et al. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure. Science of the Total Environment. 2021 Sep 15;787:147392. https://doi.org/10.1016/j.scitotenv.2021.147392
  83. Zumft WG. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews. 1997 Dec;61(4):533-616. https://doi.org/10.1128/mmbr.61.4.533-616.1997
  84. Ahmed N, Al-Mutairi KA. Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability. 2022 Jun 27;14(13):7803. https://doi.org/10.3390/su14137803
  85. Sampedro L, Whalen JK. Changes in the fatty acid profiles through the digestive tract of the earthworm Lumbricus terrestris L. Applied Soil Ecology. 2007 Jan 1;35(1):226-36. https://doi.org/10.1016/j.apsoil.2006.04.007
  86. Taheri S, Pelosi C, Dupont L. Harmful or useful? A case study of the exotic peregrine earthworm morphospecies Pontoscolex corethrurus. Soil Biology and Biochemistry. 2018 Jan 1;116:277-89. https://doi.org/10.1016/j.soilbio.2017.10.030
  87. Johnson-Maynard JL, Umiker KJ, Guy SO. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil and Tillage Research. 2007 Jun 1;94(2):338-45. https://doi.org/10.1016/j.still.2006.08.011
  88. Yasir M, Aslam Z, Kim SW, Lee SW, Jeon CO, Chung YR. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresource Technology. 2009 Oct 1;100(19):4396-403. https://doi.org/10.1016/j.biortech.2009.04.015
  89. Rouelle J. Introduction of amoebae and Rhizobium japonicum into the gut of Eisenia fetida (Sav.) and Lumbricus terrestris L. In: Earthworm Ecology: From Darwin to Vermiculture. Dordrecht: Springer Netherlands; 1983. pp. 375-81. https://doi.org/10.1007/978-94-009-5965-1_33
  90. Madsen EL, Alexander M. Transport of Rhizobium and Pseudomonas through soil. Soil Science Society of America Journal. 1982 May;46(3):557-60. https://doi.org/10.2136/sssaj1982.03615995004600030023x
  91. Khambata SR, Bhat JV. Bacterium oxalaticum, a new oxalate-decomposing bacterium isolated from the intestine of earthworms. In: Proceedings/Indian Academy of Sciences. New Delhi: Springer India; 1953 Oct. 38(4): pp. 157-60. https://doi.org/10.1007/BF03050684
  92. Elmer WH. Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Disease. 2009 Feb;93(2):175-79. https://doi.org/10.1094/PDIS-93-2-0175
  93. Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan exposure is associated with rapid restructuring of the microbiome in adult zebrafish. PloS One. 2016 May 18;11(5):e0154632. https://doi.org/10.1371/journal.pone.0154632
  94. Toyota K, Kimura M. Microbial community indigenous to the earthworm Eisenia foetida. Biology and Fertility of Soils. 2000 Jun;31:187-90. https://doi/10.1007/s003740050644
  95. Liu D, Lian B, Wu C, Guo P. A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis. 2018 Jan;74:21-29. https://doi.org/10.1007/s13199-017-0491-6
  96. Mendez R, Borges S, Betancourt C. A microscopical view of the intestine of Onychochaeta borincana (Oligochaeta: Glossoscolecidae). The 7th International Symposium on Earthworm Ecology. Cardiff Wales Pedobiologia; 2003. 47(5-6):pp.900-03. https://doi.org/10.1078/0031-4056-00278
  97. Huang K, Li F, Wei Y, Chen X, Fu X. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresource Technology. 2013 Dec 1;150:235-41. https://doi.org/10.1016/j.biortech.2013.10.006
  98. Singleton DR, Hendrix PF, Coleman DC, Whitman WB. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biology and Biochemistry. 2003 Dec 1;35(12):1547-55. https://doi.org/10.1016/S0038-0717(03)00244-X

Downloads

Download data is not yet available.