Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Unveiling the chromosomal architecture of Stemona tuberosa Lour.: first report of its karyotype and intra-generic investigation

DOI
https://doi.org/10.14719/pst.3407
Submitted
18 February 2024
Published
20-01-2025

Abstract

The present investigation aims to provide a comprehensive understanding of the chromosomal architecture of Stemona tuberosa Lour, a plant species of high ethnobotanical significance belonging to the family Stemonceae. The study entailed a thorough examination of the chromosome number, which was determined to be 2n=14, with a basic number of X=7. Based on Stebbins’s categorization, the karyotype of S. tuberosa falls under 1B category, which indicates a relatively lower degree of asymmetry in chromosome complements. Moreover, the study also comprises various other karyomorphological indices, which may act as a significant key for intra-generic investigation of other species in the future. These findings offer new insights into the chromosomal makeup of S. tuberosa and could have potential implications for the conservation and utilization of this plant species.

References

  1. Duyfjes B. Stemonaceae. Flora Malesiana-Series 1, Spermatophyta. 1993 Jan 1;11(2):399-409.
  2. Kubitzki K. Stemonaceae. In: Flowering Plants· Monocotyledons: Lilianae (except Orchidaceae). Berlin, Heidelberg: Springer Berlin Heidelberg; 1998.pp. 422-25. https://doi.org/10.1007/978-3-662-03533-7_53
  3. Duyfjes B. Stemonaceae and PentaStemonaceae; with miscellaneous notes on members of both families. Blumea: Biodiversity, Evolution and Biogeography of Plants. 1991 Jan 1;36(1):239-52.
  4. Greger H. Structural relationships, distribution and biological activities of Stemona alkaloids. Planta Medica. 2003;72:99-113. https://doi.org/10.1055/s-2005-916258
  5. Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kählig H, Hofer O, et al. Insecticidal pyrido [1, 2-a] azepine alkaloids and related derivatives from Stemona species. Phytochemistry. 2003 Aug 1;63(7):803-16. https://doi.org/10.1016/S0031-9422(03)00332-7
  6. Pilli RA, Rosso GB, de Oliveira MD. The chemistry of Stemona alkaloids: An update. Natural Product Reports. 2010;27(12):1908-37. https://doi.org/10.1039/c005018k
  7. Singh B, Kumar Borthakur S, Phukan SJ, Kumar Sinha B. Assessing ethnobotanical values and threat status of wild asparagus (Stemona tuberosa Lour.): A case study in Eastern Himalaya, India. International Journal of Conservation Science. 2012 Oct 1;3(4). https://doi.org/10.11609/JoTT.o2751.2277-94
  8. Song Y, Wu Y, Li X, Shen Y, Ding Y, Zhu H, et al. Protostemonine attenuates alternatively activated macrophage and DRA-induced asthmatic inflammation. Biochemical Pharmacology. 2018 Sep 1;155:198-206. https://doi.org/10.1016/j.bcp.2018.07.003
  9. Ramli RA. Phytochemical and biological studies on selected Stemona and Stichoneuron species (Stemonaceae). Doctor of Philosophy Thesis, School of Chemistry, University of Wollongong, 2015;2015. https://ro.uow.edu.au/theses/4441
  10. Chung HS, Hon PM, Lin G, But PP, Dong H. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Medica. 2003 Oct;69(10):914-20. https://doi.org/10.1055/s-2003-45100
  11. Fang L, Song XQ, He TT, Zhu KK, Yu JH, Song JT, et al. Two new polyketides from the roots of Stemona tuberosa. Fitoterapia. 2018 Sep 1;129:150-53. https://doi.org/10.1016/j.fitote.2018.06.025
  12. Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of Northeast India with reference to ethno botany. 2009;8(01):96-103.
  13. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000 Feb 24;403(6772):853-58. https://doi.org/10.1038/35002501.
  14. Deb DB. The Flora of Tripura state: Vegetation and Ophioglossaceae-Staphyleaceae. Today and Tomorrow's Printers and Publishers; 1981.
  15. Sakata K, Aoki K, Chang CF, Sakurai A, Tamura S, Murakoshi S. Stemospironine, a new insecticidal alkaloid of Stemona japonica Miq. Isolation, structural determination and activity. Agricultural and Biological Chemistry. 1978 Feb 1;42(2):457-63. https://doi.org/10.1080/00021369.1978.10862996
  16. Xu YT, Hon PM, Jiang RW, Cheng L, Li SH, Chan YP, et al. Antitussive effects of Stemona tuberosa with different chemical profiles. Journal of Ethnopharmacology. 2006 Nov 3;108(1):46-53. https://doi.org/10.1016/j.jep.2006.04.022
  17. Yang YE, Guo-Wei Q, Ren-Sheng X. Alkaloids from Stemona tuberosa. Phytochemistry. 1994 Nov 7;37(4):1201-03. https://doi.org/10.1016/S0031-9422(00)89558-8
  18. Schinnerl J, Brem B, But PP, Vajrodaya S, Hofer O, Greger H. Pyrrolo-and pyridoazepine alkaloids as chemical markers in Stemona species. Phytochemistry. 2007 May 1;68(10):1417-27. https://doi.org/10.1016/j.phytochem.2007.03.002
  19. Xu YT, Shaw PC, Jiang RW, Hon PM, Chan YM, But PP. Antitussive and central respiratory depressant effects of Stemona tuberosa. Journal of Ethnopharmacology. 2010 Apr 21;128(3):679-84. https://doi.org/10.1016/j.jep.2010.02.018
  20. Oginuma K, Horiuchi K, Fukuhara T. Karyomorphology of two genera in Stemonaceae. Acta Phytotaxonomica et Geobotanica. 2001 Jul 30;52(1):57-63. https://doi.org/10.18942/apg.KJ00003256634
  21. Li LC. Chromosome observations of some plants of China. Guihaia. 1986;6:99-105.
  22. Adhikari S, Sinha S, Sinha RK. Chromosomal characteristics in two different sexual phenotypes of Stichoneuron membranaceum. Vegetos. 2020 Mar;33:26-30. https://doi.org/10.1007/s42535-019-00077-6
  23. Sharma AK, Sharma A. Chromosome technique theory and practical. Third Edition. Butter works Ltd. London. 1980. https://doi.org/10.1016/B978-0-408-70942-2.50003-1
  24. Morenodiazdelaespina S, Fernandezgomez M, Risueno M. Occurrence of nucleolar material in the cytoplasm of plant cells. Cell Biology International Reports. 1979;3(3):215-25. https://doi.org/10.1016/0309-1651(79)90034-1
  25. Paszko B. A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution. 2006 Apr;258:39-48. https://doi.org/10.1007/s00606-005-0389-2
  26. Huziwara Y. Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Aster. American Journal of Botany. 1962 Feb;49(2):116-19. https://doi.org/10.1002/j.1537-2197.1962.tb14916.x
  27. Zarco CR. A new method for estimating karyotype asymmetry. Taxon. 1986 Aug;35(3):526-30. https://doi.org/10.2307/1221906
  28. Watanabe K, Yahara T, Denda T, Kosuge K. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. Journal of Plant Research. 1999 Jun; 112:145-61. https://doi.org/10.1007/PL00013869
  29. Peruzzi L, Ero?lu HE. Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics. 2013;7(1):1. https://doi.org/10.3897/compcytogen.v7i1.4431
  30. Arano H. Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. The karyotype analysis and phylogenetic considerations on Pertya and Ainsliaea. Botanical Magazine (Tokyo). 1963;76:32-39. https://doi.org/10.15281/jplantres1887.76.32
  31. Greilhuber J, Speta F. C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Systematics and Evolution. 1976 Jun;126:149-88. https://doi.org/10.1007/BF00981669
  32. Lavania UC, Srivastava S. A simple parameter of dispersion index that serves as an adjunct to karyotype asymmetry. Journal of Biosciences. 1992 Jun;17:179-82. https://doi.org/10.1007/BF02703503
  33. Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964 Dec; 52(2):201-20. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  34. Hartl M, Kiehn M. Chromosome numbers and other karyological data of four Stemona species (Stemonaceae) from Thailand. Blumea-Biodiversity, Evolution and Biogeography of Plants. 2004 Dec 10;49(2-3):457-60. https://doi.org/10.3767/000651904X484405
  35. Kiehn M, Temsch EM, Pernausl LA, Hofbauer M, Chen G, Vajrodaya S, Schinnerl J. New chromosome counts and other karyological data for members of the Stemonaceae. Blumea-Biodiversity, Evolution and Biogeography of Plants. 2021 Jul 31;66(1):53-56. https://doi.org/10.3767/blumea.2021.66.01.02
  36. Stebbins GL. Chromosomal evolution in higher plants. Chromosomal Evolution in Higher Plants. 1971 December 1;216. https://doi/full/10.5555/19711606614
  37. Phukan HD, Saha K. A study on genetic relationship between Allium sativum L. and Scadoxus multiflorus (Martyn) Raf. of Amaryllidaceae. Plant Science Today. 2019 Oct 6;6(4):491-94. https://doi.org/10.14719/pst.2019.6.4.605
  38. Kaur D, Singhal VK. Meiotic abnormalities affect genetic constitution and pollen viability in dicots from Indian cold deserts. BMC Plant Biology. 2019 January 7;19(10): https://doi.org/10.1186/s12870-018-1596-7
  39. Sybenga J. Meiotic configurations. Berlin: Springer-Verlag. 1975;1:220-29. https://doi.org/10.1007/978-3-642-80960-6_4
  40. Sharma SK, Bisht MS, Pandit MK. Synaptic mutation-driven male sterility in Panax sikkimensis Ban. (Araliaceae) from Eastern Himalaya, India. Plant Syst Evol. 2010 April 9;287:29-36. https://doi.org/10.1007/s00606-010-0286-1
  41. Bernardo Filho RA, Santos ACC, Souza FHD, Valls JFM, Pagliarini MS. Complete asynapsis resulting in 2n pollen formation in Paspalum jesuiticum Parody (Poaceae). Genet Mol Res. 2014 January 17;13:255-61. https://doi.org/10.4238/2014.January.17.9
  42. Wani AA, Bhat TA. Asynaptic and desynaptic in plants, Chapter in book, Chromosome Structure and Aberrations; 2017. 127-40. https://doi.org/10.1007/978-81-322-3673-3_6
  43. Basu S. Elucidating karyotype structure and affinity through application of karyomorphological parameters and multivariate analysis, as discerned from the study of four important legumes. The Nucleus. 2023 Apr; 66(1):39-46. https://doi.org/10.1007/s13237-023-00416-8

Downloads

Download data is not yet available.