Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effect of different concentrations of 2,4-D and BAP on callus and shoots induction of Thai Cannabis (Cannabis sativa L.) cv. Hang Kra Rog Phu Phan

DOI
https://doi.org/10.14719/pst.3687
Submitted
10 April 2024
Published
15-04-2025
Versions

Abstract

The Thai Cannabis cultivar (Cannabis sativa L.) cv. Hang Kra Rog Phu Phan is highly demanded in the pharmaceutical, cosmetic and various industries. This study investigates the effects of different concentrations of 2,4-D on callogenesis and BAP on shoot multiplication to enhance the propagation of this valuable cultivar. The results show that the MS medium supplemented with 3 mg/L of 2,4-D induces the highest callogenesis, while the MS medium supplemented with 3 mg/L BAP promotes the maximum shoot multiplication. These findings have the potential to significantly impact the cultivation of the Thai Cannabis cultivar "Hang Kra Rog Phu Phan," ensuring a sufficient supply to meet the increasing demand in various applications.

References

  1. Simiyu DC, Jang JH, Lee OR. Understanding Cannabis sativa L.: current status of propagation, use, legalization and haploid-inducer-mediated genetic engineering. Plants. 2022;11(9):1236. https://doi.org/10.3390/plants11091236
  2. Zhou Y, Wang S, Lou H, Fan P. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem Lett. 2018;23:57–61. https://doi.org/10.1016/j.phytol.2017.11.013
  3. Monthony AS, Kyne ST, Grainger CM, Jones AMP. The recalcitrance of Cannabis sativa to de novo regeneration; a multi-genotype replication study. PLoS One. 2021;16(8):e0235525. https://doi.org/10.1371/journal.pone.0235525
  4. Salami SA, Martinelli F, Giovino A, Bachari A, Arad N and Mantri N. It Is our turn to get cannabis high: put cannabinoids in food and health baskets. Molecules. 2020;25(18):4036. https://doi.org/10.3390/molecules25184036
  5. Cascio MG, Pertwee RG and Marini P. The pharmacology and therapeutic potential of plant cannabinoids, in Cannabis sativa L. Chandra S, Lata H, ElSohly MA. Botany and Biotechnology, editors. Berlin: Springer International Publishing; 2017. p. 207–25. https://doi.org/10.1007/978-3-319-54564-6_9
  6. Stasi?owicz A, Tomala A, Podolak I, Cielecka-Piontek J. Cannabis sativa L. as a natural drug meeting the criteria of a multitarget approach to treatment. International J Mol Sci. 2021;22(2):778. https://doi.org/10.3390/ijms22020778
  7. Datta S, Ramamurthy PC, Anand U, Singh S, Singh A, Dhanjal DS, Dhaka V, Kumar S, Kapoor D, Nandy S, Kumar M, Koshy EP, Dey A, Prockow J and Singh J. Wonder or evil?: multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi J Biol Sci. 2021;28:7290–313. https://doi.org/10.1016/j.sjbs.2021.08.036
  8. Monton C, Tanpao T, Navakul C, Pengkum T, Santasanasuwan S, Suksaeree J, Charoenchai L, Songsak T. Cannabidiol, ?9-tetrahydrocannabinol and cannabinol contents of Cannabis sativa L. inflorescences claimed to be Hang Kra Rog Phu Phan cultivar cultivated outdoors in various locations of Thailand. Phytochem Lett. 2023;57:126–32. https://doi.org/10.1016/j.phytol.2023.08.009
  9. Campbell LG, Peach K and Wizenberg SB. Dioecious hemp (Cannabis sativa L.) plants do not express significant sexually dimorphic morphology in the seedling stage. Sci Rep. 2021;11: 16825. https://doi.org/10.1038/s41598-021-96311-w
  10. Boonsnongcheep P, Pongkitwitoon B. Factors affecting micropropagation of Cannabis sativa L.: A review. Pharma Sci Asia. 2020;47(1):21–29.
  11. Adhikary D, Kulkarni M, El-Mezawy A, Mobini S, Elhiti M, Gjuric R, Ray A, Polowick P, Slaski JJ and Jones MP and Bhowmik P. Medical cannabis and industrial hemp tissue culture: Present status and future potential. Front Pl Sci. 2021;12:627240. https://doi.org/10.3389/fpls.2021.627240
  12. Adams TK, Masondo NA, Malatsi P, Makunga NP. Cannabis sativa: From Therapeutic Uses to Micropropagation and Beyond. Plants. 2021;10(10):2078. https://doi.org/10.3390/plants10102078
  13. Chaohua C, Gonggu Z, Lining Z, Chunsheng G, Qing T, Jianhua C, Xinbo G, Dingxiang P and Jianguang S. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind Crops Prod. 2016;83:61–65. https://doi.org/10.1016/j.indcrop.2015.12.035
  14. Lata HS, Chandra S, Khan IA, Elsohly MA. In vitro propagation of Cannabis sativa L. and evaluation of regenerated plants for genetic fidelity and cannabinoids content for quality assurance. Methods Mol Biol. 2016;1391:275–88. https://doi.org/10.1007/978-1-4939-3332-7_19
  15. Page SRG, Monthony AS, Jones AMP. Basal media optimization for the micropropagation and callogenesis of Cannabis sativa L. BioRxiv. 2020;1–23. https://doi.org/10.1101/2020.02.07.939181
  16. Monthony AS, Page SR, Hesami M, Jones AMP. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants. 2021;10(1):185. https://doi.org/10.3390/plants10010185
  17. Schilling S, Melzer R, Dowling CA, Shi J, Muldoon S, McCabe PF. A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. The Plant J. 2023;113:437–45. https://doi.org/10.1111/tpj.16051
  18. Malabadi RB, Nethravathi TL, Kolkar KP, Chalannavar RK, Mudigoudra BS, Lavanya L, Abdi G, Baijnath H. Cannabis sativa: Applications of Artificial Intelligence (AI) and Plant Tissue Culture for Micropropagation. Intl J Res Innov App Sci. 2023;8(6):117–142. https://doi.org/10.51584/IJRIAS.2023.86142
  19. Murashige T, Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant. 1962;15(3):473–97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Movahedi M, Ghasemiomran V, Torabi S. In vitro callus induction and regeneration of medicinal plant Cannabis sativa L. Iran J Med Arom Res Pl. 2016;32(5):758–69. https://doi.org/10.22092/ijmapr.2016.107859
  21. Zhang X, Xu G, Cheng C, Lei L, Sun J, Xu Y, Deng C, Dai Z, Yang Z, Chen X. Liu C, Tang Q and Su J. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis Sativa L.). Pl Biotechnol J. 2021;19:1979-87. https://doi.org/10.1111/pbi.13611
  22. Heldt HW and Piechulla B. Plant Biochemistry, 5th Edition. Elsevier; 2021.
  23. Siddique AB and Islam SS. Effect of light and dark on callus induction and regeneration in tobacco (Nicotiana Tabacum L.). Bangla J Bot. 2015;44(4):643-51. https://doi.org/10.3329/bjb.v44i4.38636
  24. Suhartanto B, Astutik M, Umami N, Suseno N and Haq MS. The effect of explants and light conditions on callus induction of Sri Kandi putih maize (Zea mays L.). IOP Earth Environ Sci. 2021;012006.
  25. Asra R, samarlina RA and Silalahi M 2020 Hormon tumbuhan (Jakarta: UKI Press)
  26. Mestinšek-Mubi Š, Svetik S, Flajšman M, Murovec J. In Vitro tissue culture and genetic analysis of two high-CBD medical Cannabis (Cannabis sativa L.) breeding lines. Genetika. 2020;52(3):925–41. https://doi.org/10.2298/GENSR2003925M
  27. Lata H, Chandra S, Techen N, Khan IA, Elsohly MA. In Vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J App Res Med Arom Pl. 2016;3(1):18–26. https://doi.org/10.1016/j.jarmap.2015.12.001
  28. Ioannidis K, Dadiotis E, Mitsis V, Melliou E, Magiatis P. Biotechnological approaches on two high CBD and CBG Cannabis sativa L. (Cannabaceae) varieties: in vitro regeneration and phytochemical consistency evaluation of micropropagated plants using quantitative 1H-NMR. Molecules. 2020;25(24):5928. https://doi.org/10.3390/molecules25245928
  29. Duta-Cornescu G, Constantin N, Pojoga DM, Nicuta D, Simon-Gruita A. Somaclonal variation—advantageor disadvantage in micropropagation of the medicinal plants. Intl J Mol Sci. 2023;24(1):838. https://doi.org/10.3390/ijms24010838
  30. Khatoon S, Liu W, Ding C, Liu X, Zheng Y, Zhang Y, Chen X, Rauf M, Alghabari F, Shah ZH. In Vitro Evaluation of the Effects of BAP concentration and pre-cooling treatments on morphological, physiological and biochemical traits of different olive (Olea euorpea L.) cultivars. Horticul. 2022;8(12):1108. https://doi.org/10.3390/horticulturae8121108
  31. Thiem B , Hermosaningtyas AA, Budzianowska A , Kikowska M . Polish contributions in developing medicinal plant in vitro propagation system. Plant Cell Tiss Organ Cul. 2023; 155(1):1–28. https://doi.org/10.1007/s11240-023-02562-y
  32. El-Banna HY. Indirect micropropagation of Thymus vulgaris. Plant. Journal of Plant Production. 2017;8(11):1241–46. https://doi.org/10.21608/jpp.2017.41300
  33. Cachi??-Cosma D, Deliu C, Rakosy-Tican L, Ardelean A. Tratat de Biotehnologie Vegetal?. Dacia; Cluj-Napoca, Romania; 2004.
  34. Ghiorghi?? G. A journey into the universe of in vitro cultures of plants. Call Environ Nat Res Res. 2019;9(4):45–60.
  35. Mohanty S, Panda MK, Subudhi E, Nayak S. Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol Plant. 2008;52:783–86. https://doi.org/10.1007/s10535-008-0153-x
  36. Page SRG, Monthony AS, Jones AMP. DKW basal salts improve micropropagation and callogenesis compared to MS basal salts in multiple commercial cultivars of Cannabis sativa. Botany. 2021;99(5):269–79. https://doi.org/10.1139/cjb-2020-0179
  37. Stephen C, Zayas VA, Galic A and Bridgen MP. Micropropagation of Hemp (Cannabis sativa L.) HortSci. 2023;58(3):307–16. https://doi.org/10.21273/HORTSCI16969-22
  38. Galán-Ávila A, García-Fortea E, Prohens J, Herraiz FJ. Development of a direct in vitro plant regeneration protocol from Cannabis sativa L. Seedling explants: Developmental morphology of shoot regeneration and ploidy level of regenerated plants. Front Pl Sci. 2020;11:645. https://doi.org/10.3389/fpls.2020.00645
  39. Movahedi M, Ghasemi-Omran VO and Torabi S. The effect of different concentrations of TDZ and BA on in vitro regeneration of Iranian cannabis (Cannabis sativa L.) using cotyledon and epicotyl explants. J Plant Mol Breed. 2015;3(2):20–27.

Downloads

Download data is not yet available.