Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 1 (2025)

Unravelling the anti-inflammatory activity of Cyperus rotundus essential oil through gas chromatography-mass spectrometry analysis, network pharmacology, and molecular docking approaches

DOI
https://doi.org/10.14719/pst.3997
Submitted
30 May 2024
Published
12-01-2025 — Updated on 21-01-2025
Versions

Abstract

Cyperus rotundus rhizome is used in the traditional system of medicine to treat various diseases. The rhizomes of this plant are traditionally used as medicine for treatments of stomach pain, bowel disorders, and inflammatory pain. The present study aims to characterize the chemical constituents of the C. rotundus rhizomes essential oil (CREO) and to evaluate its possible mechanism of action as an anti-inflammatory agent by an integrative approach of gas chromatography-mass spectrometry (GC-MS), network pharmacology, and molecular docking analysis. The compound-target-disease network revealed cubenol, gamma murolene, cyperotundone, delta selinene, alpha copaene, alpha pinene, and beta caryophyllene are core compounds with higher degree values. Protein-protein interaction analysis revealed IL1B, IL10, IL6, PTGS2, TNF, and STAT3 as hub targets. A total of 1000 biological processes, 142 cellular components, and 241 molecular functional pathways were enriched. Molecular docking analysis revealed that hub compounds and protein targets had strong binding affinity between them. The top two docked poses with the lowest binding energy were identified as PTGS2-Cubenol and IL10-Gamma murolene with binding energies of -7.9 and -7.2 kcal/mol, respectively. A molecular dynamics study revealed that the PTGS2-Cubenol and IL10-Gamma murolene complex had a good amount of deformability. These results demonstrated that CREO can act on numerous proteins and pathways to form a systematic pharmacological network, and they can be considered as a candidate drug for treating inflammatory-related disorders

References

  1. Mohamed KA, Rajeshkumar S, Anjali AK. Antiinflammatory activity of silver nanoparticles synthesised using indian herbs -a review. Ann Rom Soc Cell Biol. 2021;25:5904-14. http://www.annalsofrscb.ro/index.php/journal/article/view/2125
  2. Falcão HDS, Lima IO, Santos VLD, Dantas HDF, Diniz MDF, Barbosa-Filho JM, Batista LM. Review of the plants with anti-inflammatory activity studied in Brazil. Rev Bras Farmacogn. 2005;15:381-91. https://doi.org/10.1590/S0102-695X2005000400020
  3. Tung YT, Chua MT, Wang SY, Chang ST. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour technol. 2008;99:3908-13. https://doi.org/10.1016/j.biortech.2007.07.050
  4. Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal anti-inflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013;16:821-47. https://doi.org/10.18433/J3VW2F
  5. Obaidullah AJ, Alanazi MM, Alsaif NA, Alanazi AS, Albassam H, Az A, et al . Network pharmacology and molecular docking-based identification of potential phytocompounds from Argyreia capitiformis in the treatment of inflammation. Evidence-Based Complementary and Alternative Medicine 2022;2022:22. doi: 10.1155/2022/8037488
  6. Meena AK, Yadav AK, Niranjan US, Singh B, Nagariya AK, Verma M. Review on Cyperus rotundus-a potential herb. Int J Pharm Clin Res. 2010;2:20-22.
  7. Wang Y, Zou J, Jia Y, Zhang X, Wang C, Shi Y, et al. The mechanism of lavender essential oil in the treatment of acute colitis based on “Quantity-Effect” weight coefficient network pharmacology. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.644140
  8. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. Improved access to chemical data. PubChem Nucleic Acids Res. 2019; 47:D1102-D1109. https://doi.org/10.1093/nar/gky1033
  9. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717
  10. de Moraes ÂAB, Cascaes MM, do Nascimento LD, de Jesus PFC, Ferreira OO. Chemical evaluation, Phytotoxic Potential and In silico study of essential oils from leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon. Molecules. 2023;28:2633. https://doi.org/10.3390/molecules28062633
  11. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42:W32-38. https://doi.org/10.1093/nar/gku293
  12. Zhang Q, Liu J, Li R, Zhao R, Zhang M, Wei S, et al. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum palmatum L. against lung cancer via induction of apoptosis. Front Pharmacol. 2020;11:528308. Doi: 10.3389/fphar.2020.528308
  13. Mattingly CJ, Rosenstein MC, Colby GT, Forrest Jr JN, Boyer JL. The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. J Exp Zool A Comp Exp Biol. 2006;305:689-92. https://doi.org/10.1002/jez.a.307
  14. . Guan M, Guo L, Ma H, Wu H, Fan X. Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evidence-Based Complementary and Alternative Medicine. 2021.p.1-10. https://doi.org/10.1155/2021/5190808
  15. Deng H, Jiang J, Zhang S, Wu L, Zhang Q, Sun W. Network pharmacology and experimental validation to identify the potential mechanism of Hedyotis diffusa Willd against rheumatoid arthritis. Sci Rep. 2023;13:1425. https://doi.org/10.1038/s41598-022-25579-3
  16. Xiao G, Zeng Z, Jiang J, Xu A, Li S, Li Y, et al. Network pharmacology analysis and experimental validation to explore the mechanism of Bushao Tiaozhi capsule (BSTZC) on hyperlipidemia. Sci Rep. 2022;12:6992. https://doi.org/10.1038/s41598-022-11139-2
  17. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta CJ, et al . STRING v11: protein –protein association networks with increased coverage, supporting functional discovery in genome wide experimental datasets. Nucleic Acids Res. 2019;47:D607-13. https://doi.org/10.1093/nar/gky1131
  18. Nandi A, Das A, Dey YN, Roy KK. The abundant phytocannabinoids in rheumatoid arthritis: therapeutic targets and molecular processes identified using integrated bioinformatics and network pharmacology. Life. 2023;13:700. https://doi.org/10.3390/life13030700
  19. Ijaz M, Huang X, Buabeid M, Chohan TA, Murtaza G, Shamim S. Mechanistic investigation of Glycyrrhiza uralensis effects against respiratory ailments: application of network pharmacology and molecular docking approaches. Lett Drug Des Discov. 2022;19:397-412. https://doi.org/10. 2174/1570180818666211119113853
  20. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosyst. 2015;127:67-72. https://doi.org/10.1016/j.biosystems.2014.11.005
  21. Dias R, de Azevedo J, Walter F. Molecular docking algorithms. Curr Drug Targets. 2008;9:1040-47. https://doi.org/10.2174/138945008786949432
  22. Noor F, Rehman A, Ashfaq UA, Saleem MH, Okla MK, Al-Hashimi A, et al. Integrating network pharmacology and molecular docking approaches to decipher the multi-target pharmacological mechanism of Abrus precatorius L. acting on diabetes. Pharm, 2022;15:414. https://doi.org/10.3390/ph15040414
  23. Muhammad SA, Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn Mag. 2015;1:S123-26.
  24. Dallakyan S, lson AJ. Small-molecule library screening by docking with PyRx. Chemical Biology Methods and Protocols. 2015. p. 243-50.
  25. Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol. 2005;15:586-92. https://doi.org/10.1016/j.sbi.2005.08.007
  26. Dykeman EC, Sankey OF. Normal mode analysis and applications in biological physics. J Phys Condens Matter. 2010;22:423202. 10.1088/0953-8984/22/42/423202
  27. Ma J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure. 2005;13:373-80.
  28. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42:W271-76. https://doi.org/10.1093/nar/gku339
  29. Sumera, Anwer F, Waseem M, Fatima A, Malik N, Ali A, Zahid S. Molecular docking and molecular dynamics studies reveal secretory proteins as novel targets of temozolomide in glioblastoma multiforme. Molecules. 2022; 27:7198. https://doi.org/10.3390/molecules27217198
  30. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871-82.
  31. Mobasheri A. Intersection of inflammation and herbal medicine in the treatment of osteoarthritis. Curr Rheumatol Rep. 2012;14:604-16. https://doi.org/10.1007/s11926-012-0288-9
  32. Zhu M, Luk HH, Fung HS, Luk CT. Cytoprotective effects of C. rotundus against ethanol induced gastric ulceration in rats. Phytotherapy Res. 199711:392-94. https://doi.org/10.1002/(SICI)1099-1573(199708)11:5%3C392::AID-PTR113%3E3.0.CO;2-1
  33. Jin JH, Lee DU, Kim YS, Kim HP. Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Arch Pharmacal Res. 2011;34: 223-28. https://doi.org/10.1007/s12272-011-0207-z
  34. de Cássia DSR, Andrade LN, De Sousa DP. Sesquiterpenes from essential oils and anti-inflammatory activity. Nat Prod Com. 2015;10:1767-74.
  35. Kilani S, Abdelwahed A, Ammar RB, Hayder N, Ghedira K, Chraief I, et al. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J Essent Oil Res. 2005;17:695-700. https://doi.org/10.1080/10412905.2005.9699035
  36. Zhang MQ, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007;18:478-88. https://doi.org/10.1016/j.copbio.2007.10.005
  37. Koyama S, Purk A, Kaur M, Soini HA, Novotny MV, Davis K, et al. Beta-caryophyllene enhances wound healing through multiple routes. PloS One. 2019;14:e0216104. DOI: 10.1371/journal.pone.0216104.
  38. Gushiken LFS, Beserra FP, Hussni MF, Gonzaga MT, Ribeiro VP, et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxid Med Cell Longev. 2022;2022:9004014. doi: 10.1155/2022/9004014.
  39. Rogus J, Beck JD, Offenbacher S, Huttner K, Iacoviello L, Latella MC, et al. IL1B gene promoter haplotype pairs predict clinical levels of interleukin-1? and C-reactive protein. Hum Genet. 2008;123:387-98. https://doi.org/10.1007/s00439-008-0488-6
  40. Schreiber S, Heinig T, Thiele HG, Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterol. 1995;108:1434-44. https://doi.org/10.1016/0016-5085(95)90692-4
  41. Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47:149-56. https://doi.org/10.1016/j.cyto.2009.07.003
  42. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20:6008. https://doi.org/10.3390/ijms20236008
  43. Bradley J. TNF?mediated inflammatory disease. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2008;214:149-60. https://doi.org/10.1002/path.2287
  44. Ulrich CM, Whitton J, Yu JH, Sibert J, Sparks R, Potter JD, Bigler J. PTGS2 (COX-2) ? 765G> C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs. 2005;14:616-19. https://doi.org/10.1158/1055-9965.EPI-04-0510
  45. Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25:R421-34. https://doi.org/10.1530/ERC-17-0309
  46. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23:38-54. https://doi.org/10.1038/s41577-022-00746-9
  47. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52:2251-63. https://doi.org/10.1007/s00125-009-1458-9.

Downloads

Download data is not yet available.