Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Biofungicides derived from indigenous microorganisms fermented on Tagetes erecta L. flowers for the control of anthracnose in chili pepper (Capsicum annuum L.)

DOI
https://doi.org/10.14719/pst.4130
Submitted
18 June 2024
Published
22-01-2025
Versions

Abstract

Local microorganisms (LMo) are native microbial consortia that colonize specific substrates and ferment them when supplemented with nutrients. LMo-based products are emerging as eco-friendly alternatives for plant disease management. In this study, Tagetes erecta L. flowers were used as a substrate to cultivate LMo, which were then cross-applied to chili peppers (Capsicum annuum L.) to control anthracnose disease caused by Colletotrichum capsici. The research aimed to evaluate the antifungal activity, minimum fungicidal concentration (MFC) and overall effectiveness of LMo derived from T. erecta flowers against C. capsici. The study was conducted in 3 stages: first, assessing the antifungal activity of LMo using the agar dilution method, second, determining the MFC of the LMo solution and third, evaluating the in planta efficacy of LMo in controlling anthracnose. Results demonstrated that LMo formulated from T. erecta exhibited strong antifungal activity, with a 15.99 mm inhibition zone and an MFC of 40%. In the field trial, a 50% LMo concentration significantly suppressed anthracnose, improving chili pepper condition and appearance compared to both negative and positive controls. These findings suggest that LMo based on T. erecta flowers offers a cost-effective, abundant and eco-friendly solution for anthracnose management, particularly for chili farmers in Southern Sulawesi.

References

  1. Srinivasan K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Critical Reviews in Food Science and Nutrition. 2016;56(9):1488–500. https://doi.org/10.1080/10408398.2013.772090
  2. Panchal S, Bliss E, Brown L. Capsaicin in metabolic syndrome. Nutrients. 2018;10(5):630. https://doi.org/10.3390/nu10050630
  3. Lu M, Chen C, Lan Y, Xiao J, Li R, Huang J, et al. Capsaicin-the major bioactive ingredient of chili peppers: bio-efficacy and delivery systems. Food and Function. 2020;11(4):2848–60. https://doi.org/10.1039/d0fo00351d
  4. Pusat Data dan Sistem Informasi Pertanian. Outlook cabai, komoditas pertanian sub sektor hortikultura:cabai merah [e-book]. Jakarta: Sekretariat Jenderal Kementerian Pertanian; 2016 [cited 18 Jun 2024].
  5. Badan Pusat Statistik (BPS). Produksi cabai merah. Badan Pusat Statistik Provinsi Sulawesi Tenggara [Internet]. 2017. [cited 15 Jun 2024].
  6. Parisi M, Alioto D, Tripodi P. Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences. 2020;21(7):2587. https://doi.org/10.3390/ijms21072587
  7. de Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, et al. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia. IMA Fungus. 2019;10(8):1–32. https://doi.org/10.1186/s43008-019-0001-y
  8. Sastrosumarjo S. Formation of antracnose-resistant chili varieties with a conventional method and biotechnology approach. In RUT VIII research report; Ministry of Research and Technology RI LIPI: Jakarta, Indonesia; 2003.
  9. Amelia R, Anggriani N, Istifadah N, Supriatna AK. Dynamic analysis of mathematical model of the spread of yellow virus in red chili plants through insect vectors with logistical functions. In: AIP Conference Proceedings; 2020. 2264(1):040006. AIP Publishing LLC. https://doi.org/10.1063/5.0023572
  10. Rafiq M, Javaid A, Kanwal A, Anwar A, Khan IH, Kanwal Q, et al. GC-MS analysis and antifungal potential of flower extract of Acacia nilotica subsp. indica against Macrophomina phaseolina. Microbial Pathogenesis. 2024;106819. https://doi.org/10.1016/j.micpath.2024.106819
  11. Ngibad K, Muadifah A, Triarini LJ, Amalia LR, Damayanti NK. A review of application of natural products as fungicides for chili. Environmental and Toxicology Management. 2021;1(2):9–22. https://doi.org/10.33086/etm.v1i2.2022
  12. Nurmansyah IH, Suryani E, Gustia H, Ramadhan AI. The effect of various essential oil and solvent additives on the botanical pesticide of Piper aduncum essential oil on formulation antifungal activity. Results in Engineering. 2022;16(100644):1–5. https://doi.org/10.1016/j.rineng.2022.100644
  13. Javaid A, Ali A, Khan IH, Ferdosi MFH. Leaves of Chenopodium album as source of natural fungicides against Sclerotium rolfsii. Arabian Journal of Chemistry. 2023;16(5):104677. https://doi.org/10.1016/j.arabjc.2023.104677
  14. Ferdosi MFH, Khan IH, Javaid A, Nadeem M, Munir A. Natural pesticidal compounds of Euphorbia prostrata. Pakistan Journal of Phytopathology. 2021;33(2):349–55. https://doi.org/10.33866/phytopathol.033.02.0707
  15. Malahlela M, Thibane VS, Mudau FN. Nematocidal activity of fermented extracts from Lantana camara plant parts against Meloidogyne javanica on tomato. Pesticide Biochemistry and Physiology2021;196:105641.https://doi.org/10.1080/19315260.2019.1697981
  16. Sharf W, Javaid A, Shoaib A, Khan IH. Induction of resistance in chili against Sclerotium rolfsii by plant growth promoting rhizobacteria and Anagallis arvensis. Egyptian Journal of Biological Pest Control. 2021;31:16. https://doi.org/10.1186/s41938-021-00364-y
  17. Neli ND, Suliasih. Fermentation with local microorganisms to improve pod cacao quality as ruminants feed. International Seminar on Promoting Local Resources for Food and Health; 2015. Bengkulu, Indonesia.
  18. Riyanto A. Aplikasi pupuk kompos daun ketapang dan Titonia sebagai bahan organik dalam meningkatkan pertumbuhan serta produksi bawang merah (Allium ascalonicum L.) [Skripsi]. Fakultas Pertanian, Universitas Islam Riau, Pekanbaru; 2021.
  19. Edy HJ, Parwanto MLE. Pemanfaatan tanaman Tagetes erecta Linn. dalam kesehatan. Jurnal Biomedika dan Kesehatan. 2019;2(2):77–80.https://doi.org/10.18051/JBiomedKes.2019.v2.77-80
  20. Jaison JP, Balasubramanian B, Gangwar J, James N, Pappuswamy M, Anand AV, et al. Green synthesis of bioinspired nanoparticles mediated from plant extracts of Asteraceae family for potential biological applications. Antibiotics (Basel). 2023;12(3):543. https://doi.org/10.3390/antibiotics12030543
  21. Ilangovan A, Venkatramanan A, Thangarajan P, Saravanan A, Rajendran S, Kaveri K. Green synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous extract of Tagetes erecta flower and evaluation of its antioxidant, antimicrobial and cytotoxic activities on HeLa cell line. Current Biotechnology.2021;10(1):61–76. https://doi.org/10.2174/2211550109999201202123939
  22. Al-Aboody MS, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics. 2020;9(2):45. https://doi.org/10.3390/antibiotics9020045
  23. Ahmad SW, Yanti NA, Walhidayah T. Content of functional microorganisms and nutrients of local microorganisms (LoM) coconut husk (Cocos nucifera L.) using different sources of inoculum. AIP Conference Proceedings; 2023. 2704(1):1–9. https://doi.org/10.1063/5.0138490
  24. Lay BW. Analisis microbiologi di laboratory. Jakarta: PT Raja Grafindo Persada; 1994.
  25. Cowan ST. Manual for the identification of medical fungi. London: Cambrige University Press; 2004.
  26. Warbung YY, Wowor VNS, Posangi J. Inhibition of sea sponge extract Callyspongia sp. against the growth of Staphylococcus aureus bacteria. EGiGi Journal (eG). 2013;1(2):1?12. https://doi.org/10.35790/eg.1.2.2013.3151
  27. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry. 2020;7(1):105–09. https://doi.org/10.1080/26415275.2020.1796674
  28. Darmadi AAK, Suriani NL, Ginantra IK, Sudirga SK. Short communication: Effectiveness of cinnamon leaf extract to control anthracnose disease on large chilies in Bali, Indonesia. Biodiversitas Journal. 2022;23(6):2859–64. https://doi.org/10.13057/biodiv/d230611
  29. Purnamasari L, Purnomo H, Setyawan HB. Exploration of local microorganisms from rumen and their potential to make silage from agricultural waste. ASEAN Journal on Science and Technology for Development. 2020;37(3):109–14. https://doi.org/10.29037/ajstd.642
  30. Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 2020;6(4):106. https://doi.org/10.3390/fermentation6040106
  31. Kumar S, Kaure, H. Prevalence of banded leaf and sheath blight of maize in Punjab and its management with fungicides. Agricultural Research Journal. 2020;57(5):738–44. https://doi.org/10.5958/2395-146X.2020.00108.8.
  32. Thilagam R, Balagurunathan R, Sangeetha M, Hemalatha N. Antifungal activity of actinobacteria with a potential to inhibit rice blast fungus Magnaporthe oryzae (anamorph: Pyricularia oryzae). Asian Journal of Pharmaceutical and Clinical Research. 2021;14(3):121–25. https://doi.org/10.22159/ajpcr.2021.v14i3.40491
  33. Brooks GF, Butel JS, Morse SA, Mudihardi E, Adelberg’s JM. Mikrobiologi kedokteran. Jakarta: Salemba Medika; 2005.
  34. Du R, Liu J, Sun P, Li H, Wang J. Inhibitory effect and mechanism of Tagetes erecta L. fungicide on Fusarium oxysporum f. sp. niveum. Scientific Reports. 2017;7(14442):1–13. https://doi.org/10.1038/s41598-017-14937-1
  35. Mpila DA, Fatimawali WI. Uji aktifitas antibakteri ekstrak etanol daun mayana (Coleus atropurpureus (L) Benth) terhadap Staphylococcus aureus, Escherchia coli dan Pseudomonas aeruginosa secara in-vitro. Manado, Program Studi Farmasi FMIPA UNSRAT. 2012;1(1). 2012.
  36. Biernasiuk A, Berecka-Rycerz A, Gumieniczek A, Malm M, ??czkowski KZ, Szyma?ska J, et al. The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Applied Microbiology and Biotechnology. 2021;105(16-17):6355–67. https://doi.org/10.1007/s00253-021-11477-7
  37. Shetty LJ, Sakr FM, Al-Obaidy K, Patel MJ, Shareef H. A brief review on medicinal plant Tagetes erecta Linn. Journal of Applied Pharmaceutical Science.2015;5:91–95. https://doi.org/10.7324/JAPS.2015.510.S16
  38. Dinkwar GT, Yadav VK, Kumar A, Nema S, Mishra S. Compatibility of fungicides with potent Trichoderma isolates. International Journal of Plant and Soil Science. 2023;35(18):1934–48. https://doi.org/10.9734/ijpss/2023/v35i183475
  39. Saxena A, Raghuwanshi R, Gupta VK, Singh HB. Chilli anthracnose: the epidemiology and management. Frontiers in Microbiology. 2016;7(1527):1–18. https://doi.org/10.3389/fmicb.2016.01527
  40. Sutomo RC, Subandiyah S, Wibowo A, Widiastuti A. Description and pathogenicity of Colletotrichum species causing chili anthracnose in Yogyakarta, Indonesia. AGRIVITA Journal of Agricultural Science. http://doi.org/10.17503/agrivita.v44i2.3705
  41. Kleemann J, Rincon Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, et al. Sequential delivery of host host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogens. 2012;8(8):e1002643. https://doi.org/10.1371/journal.ppat.1002643
  42. Tsushima A, Narusaka M, Gan P, Kumakura N, Hiroyama R, Kato N, et al. The conserved Colletotrichum spp. effector candidate CEC3 induces nuclear expansion and cell death in plants. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.682155

Downloads

Download data is not yet available.