Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Nanobiosensors for early detection of plant pathogens

DOI
https://doi.org/10.14719/pst.4285
Submitted
7 July 2024
Published
27-12-2024 — Updated on 01-01-2025
Versions

Abstract

Plant pathogens are a major concern in production of crops as they lead to a great loss of food grains. Although several methods are available to manage the diseases and the chemical-based methods are frequently used, and sometimes indiscriminate use poses serious problems to the environment. It is, therefore, necessary to detect plant pathogens at an early stage in order to control epidemics. Plant pathogens can be detected using conventional methods such as culture-dependent, biochemical and molecular techniques; however, these methods need advanced technical skills and well-equipped laboratory facilities and are not suitable for in situ analysis. Several nanotechnology-based methods are available for plant pathogen detection. Among them, biosensing systems for early detection of the pathogen using nanobiosensor are gaining momentum in field of research on plant pathogen detection. Materials having size ranging from one and one hundred nanometers are known as nanoparticles. These materials have special qualities that can be used to improve agricultural practices. Nanobiosensors are novel integrated systems of biosensors that are made up of a bioreceptor, transducer and a detector on the nano scale size. These nano-inspired biosensors have played a major role in enhancing nature of life through different medical, environmental and quality-control applications globally. Numerous nanobiosensors have been developed, including those for detecting plant infections caused by fungi, viruses, and bacteria. This review will contribute to understanding the basics of biosensors and their accessible biosensor based detecting tools and techniques for plant pathogens.

References

  1. Shivashakarappa K, Venkatesh Reddy, Tupakula VK, Ali Farnian, Abhilash Vuppula, Raghavendra Gunnaiah. Nanotechnology for the detection of plant pathogens. Plant Nano Biology. 2022;100018. https://doi.org/10.1016/j.plana.2022.100018.
  2. De Boer SH, Lopez MM. New grower-friendly methods for plant pathogen monitoring. Annu Rev Phytopathol. 2012;50:197-218. https://doi.org/10.1146/annurev-phyto-081211-172942
  3. Martinelli F, Scalenghe R, Davino S, et al. Advanced methods of plant disease detection. A review. Agron Sustain Dev. 2015;35:1-25. https://doi.org/10.1007/s13593-014-0246-1
  4. Pallás V, Sánchez-Navarro JA, James D. Recent Advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol. 2018;9:2087. https://doi.org/10.3389/fmicb.2018.02087
  5. Rossella Santonocito, Rossana Parlascino, Alessia Cavallaro, Roberta Puglisi, Andrea Pappalardo, Francesco Aloi, et al. Detection of plant pathogenic fungi by a fluorescent sensor array. Sensors and Actuators B: Chemical. 2023;393:134305. https://doi.org/10.1016/j.snb.2023.134305.
  6. Dada AO, Adekola FA, Adeyemi OS, Bello OM, Oluwaseun AC, Awakan OJ, Grace FAA. Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. In. Ed. Kiran Maz. Silver Nanoparticles-Fabrication, Characterization and Applications. Intech Open (Internet); 2018. 118:223-27. https://doi.org/10.5772/intechopen.76947
  7. de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821-24. https://doi.org/10.1038/nnano.2012.186
  8. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. Plant pathogen nanodiagnostic techniques: forthcoming changes. Biotechnol Biotechnol Equip. 2014;28(5):775-85. https://doi.org/10.1080/13102818.2014.960739
  9. Kashyap PL, Kumar S, Jasrotia P, Singh DP, Singh GP. Nanosensors for plant disease diagnosis: Current understanding and future perspectives. In: Pudake R., Chauhan N, Kole C. editors. Nanoscience for Sustainable Agriculture. Springer, Cham; 2019. 189-205. https://doi.org/10.1007/978-3-319-97852-9_9
  10. Navya PN, Daima HK. Rational engineering of physiochemical properties of nanomaterials for biochemical application with nano toxicological perspectives. Nano Convergence. 2016;3. https://doi.org/10.1186/s40580-016-0064-z
  11. Jain K. Nanodiagnostics: application of Nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn. 2003;(2):153-16.
  12. Kumar A, Furtado VL, Gonçalves JM, Bannitz-Fernandes R, Netto LES, Araki K, Bertotti M. Amperometric microsensor based on nanoporous gold for ascorbic acid detection in highly acidic biological extracts. Anal Chim Acta. 2020;1095:61-70. https://doi.org/10.1016/j.aca.2019.10.022
  13. Morrison GA, Fu J, Lee GC, Wiederhold NP, Cañete-Gibas CF, Bunnik EM, Wickes BL. Nanopore sequencing of the fungal intergenic spacer sequence as a potential rapid diagnostic assay. J Clin Microbiol (Internet). 2020 (Cited Nov 18);58(12):e01972-20. https://doi.org/10.1128/JCM.01972-20
  14. Sadanandom A, Napier RM. Biosensors in plants. Curr Opin Plant Biol (Internet). 2010 (Cited Dec);13(6):736-43. https://doi.org/10.1016/j.pbi.2010.08.010
  15. Singh LB, Zeshmarani DS, Hijam C, Qutub MM, Singh YH, Prabin S, Singh OW. Nanotechnology and its role in plant pathology. Pharma Innovation. 2023;12:37-49. https://doi.org/10.22271/tpi.2023.v12.i12a.24452
  16. Liu C, Xu C, Xue N, Sun JH, Cai H, Li T, et al. Enzyme biosensors for point-of-care testing. In: Siva Yellampalli, editor. MEMS Sensors: Des Appl; 2018. 49:49-70. https://doi.org/10.5772/intechopen.73249
  17. Elmer W, White JC. The future of nanotechnology in plant pathology. Annual Review of Phytopathology. 2018;56:111-33. https://doi.org/10.1146/annurev-phyto-080417-050108
  18. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021 Feb 5;21(4):1109. doi: 10.3390/s21041109. PMID: 33562639; PMCID: PMC7915135
  19. Akbar Vaseghi, Naser Safaie, Babak Bakhshinejad, Afshin Mohsenifar, Majid Sadeghizadeh. Detection of Pseudomonas syringae pathovars by thiol-linked DNA–Gold nanoparticle probes. Sensors and Actuators B: Chemical. 2013;181:644-51.https://doi.org/10.1016/j.snb.2013.02.018.
  20. Dubert B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology. 2001;19:365-70. https://doi.org/10.1038/86762
  21. Lau HY, Wu H, Wee EJ, Trau M, Wang Y, Botella JR. Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep. [Internet]. 2017 [cited Jan 17];7:38896. https://doi.org/10.1038/srep38896
  22. Li LL. Self-assembled nanomaterials for bacterial infection diagnosis and therapy. In: Wang H, Li LL. editors. In vivo self-assembly nanotechnology for biomedical applications. Nanomedicine and Nanotoxicology. Singapore: Springer; 2018. p 57-88. https://doi.org/10.1007/978-981-10-6913-0_3
  23. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, et al. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Advanced Materials Research. 2009;79-82:513-16. https://doi.org/10.4028/www.scientific.net/AMR.79-82.513
  24. Farber C, Mahnke M, Sanchez L, Kurouski D. Advanced spectroscopic techniques for plant disease diagnostics. A review. Tr AC Trends in Analytical Chemistry. 2019;118:43-49. https://doi.org/10.1016/j.trac.2019.05.022
  25. Yamaguchi T, Tsuruda Y, Furukawa T, Negishi L, Imura Y, Sakuda S, et al. Synthesis of CdSe quantum dots using Fusarium oxysporum. Materials (Basel). 2016; 9(10):855. https://doi.org/doi: 10.3390/ma9100855
  26. Regiart M, Fernández-Baldo MA, Villarroel-Rocha J, Messina GA, Bertolino FA, Sapag K, et al. Microfluidic immunosensor based on mesoporous silica platform and CMK-3/poly-acrylamide-co-methacrylate of dihydrolipoic acid modified gold electrode for cancer biomarker detection. Anal Chim Acta [Internet]. 2017 [Cited Apr 22]; 963:83-92. https://doi.org/10.1016/j.aca.2017.01.029
  27. Jarocka U, W?sowicz M, Radecka H, Malinowski T, Michalczuk L, Radecki J. Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis. 2011;23(9):2197-204. https://doi.org/10.1002/elan.201100152
  28. Sellappan L, Manoharan S, Sanmugam A, Anh NT. Role of nanobiosensors and biosensors for plant virus detection. Nanosensors for Smart Agriculture. 2022;493-506. https://doi.org/10.1016/B978-0-12-824554-5.00004-5
  29. You C, Bhagawati M, Brecht A, Piehler J. Affinity capturing for targeting proteins into micro and nanostructures. Anal Bioanal Chem [Internet]. 2009 [Cited Mar 2009];393(6-7):1563-70. https://doi.org/10.1007/s00216-008-2595-6
  30. Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P. Nanotechnology in agriculture: a review. Journal of Pure and Applied Microbiology. 2015;9(1):737-47.
  31. Sharma A, Rogers KR. Biosensors. Measurement Science and Technology. 1994;5(5):461. https://doi.org/10.1088/0957-0233/5/5/001
  32. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chemical Society Reviews. 2010;39:1747-63. https://doi.org/10.1039/b714449k
  33. Fang Y, Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors (Basel). 2015;5(3):537-61. https://doi.org/10.3390/bios5030537
  34. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2006;18(4):319-26. https://doi.org/10.1002/elan.200503415
  35. Freitas TA, Proença CA, Baldo TA, Materón EM, Wong A, Magnani RF, Faria RC. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta (Internet). 2019 (Cited Dec, 1);205:120110. https://doi.org/10.1016/j.talanta.2019.07.005
  36. Zhao Y, Liu L, Kong D, Kuang H, Wang L, Xu C. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl Mater Interfaces. 2014;6(23):21178-83. https://doi.org/10.1021/am506104r
  37. Haji-Hashemi H, Parviz Norouzi, Mohammad Reza Safarnejad, Bagher Larijani, Mohammad Mahdi Habibi, Hamideh Raeisi, Mohammad Reza Ganjali. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. Journal of Electroanalytical Chemistry. 2018;820(4):111-17. https://doi.org/10.1016/j.jelechem.2018.04.062
  38. Lu L, Chee G, Yamada K, Jun S. Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens Bioelectron. 2013;42:492-95. https://doi.org/10.1016/j.bios.2012.10.060
  39. Chaudhary M, Verma S, Kumar A, Basavaraj YB, Tiwari P, Singh S, et al. Graphene oxide based electrochemical immunosensor for rapid detection of groundnut bud necrosis orthotospovirus in agricultural crops. Talanta (Internet). 2021(Cited Dec 1);235:122717. https://doi.org/10.1016/j.talanta.2021.122717
  40. Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel). 2009;9(6):4407-45. https://doi.org/10.3390/s90604407
  41. Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta. 2006;568(1-2):200-10. https://doi.org/10.1016/j.aca.2005.11.065
  42. Ansari AA, Alhoshan M, Alsalhi MS, Aldwayyan AS. Prospects of nanotechnology in clinical immunodiagnostics. Sensors (Basel). 2010;10(7):6535-81. https://doi.org/10.3390/s100706535
  43. Leonard P, Hearty S, Brennan, Dunne L, Quinn J, Chakraborty T, O'Kennedy R. Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol. 2003;32(1):3-13. https://doi.org/10.1016/S0141-0229(02)00232-6
  44. Nicole JR, Dzyadevych SV. Conductometric Microbiosensors for environmental monitoring. Sensors. 2008;8(4):2569-88. https://doi.org/10.3390/s8042569
  45. Khater M, De La Escosura-Muñiz A, Quesada-González D, Merkoçi A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta. 2019;1046:123-31. https://doi.org/10.1016/j.aca.2018.09.031
  46. Shoute LCT, Anwar A, MacKay S, Abdelrasoul GN, Lin D, Yan Z, et al. Immuno-impedimetric biosensor for onsite monitoring of ascospores and forecasting of sclerotinia stem rot of Canola. Sci Rep (Internet). 2018 (cited Aug 17);8(1):12396. https://doi.org/10.1038/s41598-018-30167-5
  47. Cebula Z, ?o??dowska S, Dzi?bowska K, Skwarecka M, Malinowska N, Bia?obrzeska W, et al. Detection of the plant pathogen Pseudomonas syringae pv. lachrymans on antibody-modified gold electrodes by electrochemical impedance spectroscopy. Sensors (Basel). (Internet). 2019 (cited 2019 Dec 9);19(24):5411. https://doi.org/10.3390/s19245411
  48. Ngeh-Ngwainbi J, Suleiman AA, Guilbault GG. Piezoelectric crystal biosensors. Biosensors and Bioelectronics. 1990;5(1):13-26. https://doi.org/10.1016/0956-5663(90)80023-7
  49. Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, et al. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem. 2013;440(1):18-22. https://doi.org/10.1016/j.ab.2013.04.026
  50. Eun AJ, Huang L, Chew FT, Li SF, Wong SM. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods. 2002;99(1-2):71-79. https://doi.org/10.1016/S0166-0934(01)00382-2
  51. Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron. 2008;24(3):339-48. https://doi.org/10.1016/j.bios.2008.06.045
  52. Campbell GA, Mutharasan R. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min. Biosens Bioelectron. 2006;22(1):78-85. https://doi.org/10.1016/j.bios.2005.12.002
  53. Cassedy A, Mullins E, O' Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv (Internet). 2020 (cited 2019 Feb 23);39:107358. https://doi.org/10.1016/j.biotechadv.2019.02.014
  54. Candresse T, Lot H, German-Retana S, Krause-Sakate R, Thomas J, Souche S, et al. Analysis of the serological variability of Lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology. J Gen Virol. 2007;88(9):2605-10. https://doi.org/10.1099/vir.0.82980-0
  55. Dickert FL, Hayden O, Bindeus R, Mann KJ, Blaas D, Waigmann E. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal Bioanal Chem. 2004;378(8):1929-34. https://doi.org/10.1007/s00216-004-2521-5
  56. Nugaeva N, Gfeller KY, Backmann N, Düggelin M, Lang HP, Güntherodt HJ, Hegner M. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc Microanal. 2007;13(1):13-17. https://doi.org/10.1017/S1431927607070067
  57. Skottrup P, Hearty S, Frøkiaer H, Leonard P, Hejgaard J, O'Kennedy R, et al. Detection of fungal spores using a generic surface plasmon resonance immunoassay. Biosens Bioelectron. 2007;22(11):2724-29. https://doi.org/10.1016/j.bios.2006.11.017
  58. Lin HY, Huang CH, Lu SH, Kuo IT, Chau LK. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron. 2014;51:371-78. https://doi.org/10.1016/j.bios.2013.08.009
  59. Chartuprayoon N, Rheem Y, Ng JC, Nam J, Chen W, Myung NV. Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Analytical Methods. 2013;5(14):3497-502. https://doi.org/10.1039/c3ay40371h
  60. Perdikaris A, Vassilakos N, Yiakoumettis I, Kektsidou O, Kintzios S. Development of a portable, high throughput biosensor system for rapid plant virus detection. J Virol Methods. 2011;177(1):94-99. https://doi.org/10.1016/j.jviromet.2011.06.024
  61. Kumar A, Dash SK, Suman DPS. DNA based biosensors for detection of pathogens. In: Singh HP, Chowdapa P, Chakraborty BN, Podile AR. editors. Plant Fungal Disease Management, 1st Edition Chapter: DNA Based Biosensors for Detection of Pathogens, New York. Westville; 2015. pp. 31-35.
  62. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized enzymes in biosensor applications. Materials (Basel). 2019;12(1):121. https://doi.org/10.3390/ma12010121.
  63. Chen JY, Penn LS, Xi J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens Bioelectron. (Internet). 2018 (cited 2018 Jan 15);99:593-602. https://doi.org/10.1016/j.bios.2017.08.032.
  64. Thies JW, Kuhn P, Thürmann B, Dübel S, Dietzel A. Microfluidic quartz-crystal-microbalance (QCM) sensors with specialized immunoassays for extended measurement range and improved reusability. Microelectronic Engineering. 2017;179:25-30. https://doi.org/10.1016/j.mee.2017.04.023
  65. ?eker ?, Elçin AE, Yumak T, S?na? A, Elçin YM. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicology in vitro. 2014;28:1349-58. https://doi.org/10.1016/j.tiv.2014.06.016
  66. Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron (Internet). 2020 (Cited Nov 15);168:112513. https://doi.org/10.1016/j.bios.2020.112513
  67. Xu JG, Tian CR, Hu QP, Luo JY, Wang XD, Tian XD. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. Journal of Agricultural and Food Chemistry. 2009;57:10392-98. https://doi.org/10.1021/jf902778j.
  68. Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron. 2017;93:72-86. https://doi.org/10.1016/j.bios.2016.09.091.
  69. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192-99. https://doi.org/10.1038/nbt873
  70. Privett BJ, Shin JH, Schoenfisch MH. Electrochemical sensors. Anal Chem. 2010;82(12):4723-41. https://doi.org/10.1021/ac101075n
  71. Wang L, Li PC. Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agric Food Chem. 2007 Dec 26;55(26):10509-16. https://doi.org/10.1021/jf0721242
  72. Sabo Wada Dutse, Nor Azah Yusof, Haslina Ahmad, Mohd Zobir Hussein, Zulkarnain Zainal, Roozbeh hushiarian. DNA-based biosensor for detection of Ganoderma boninense, an oil palm pathogen utilizing newly synthesized ruthenium complex [Ru(phen)2(qtpy)]2+ based on a PEDOT-PSS/Ag nanoparticles modified electrode. Int J Electrochem Sci. 2013;8(9):11048–57. https://doi.org/10.1016/S1452-3981(23)13168-3
  73. Dutse SW, Yusof NA, Ahmad H, Hussein MZ, Zainal Z, Hushiarian R. DNA-based biosensor for detection of Ganoderma boninense, an oil palm pathogen utilizing newly synthesized ruthenium complex [Ru(phen)2(qtpy)]2+ based on a PEDOT-PSS/Ag nanoparticles modified electrode. International J Electrochemical Science. 2013;8(9):11048-57. https://doi.org/10.1016/S1452-3981(23)13168-3.
  74. Rana K, Mittal J, Narang J, Mishra A, Pudake RN. Graphene based electrochemical DNA biosensor for detection of false smut of rice (Ustilaginoidea virens). Plant Pathol J. 2021;37(3):291-98. https://doi.org/10.5423/PPJ.OA.11.2020.0207
  75. Byoungho L. Review of the present status of optical fiber sensors. Optical Fiber Technology. 2003;9:57-79. https://doi.org/10.1016/S1068-5200(02)00527-8
  76. Wang R, Tombelli S, Minunni M, Spiriti MM, Mascini M. Immobilisation of DNA probes for the development of SPR-based sensing. Biosens Bioelectron. 2004 Nov 15;20(5):967-74. https://doi.org/10.1016/j.bios.2004.06.013
  77. Yu F, Yao D, Knoll W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res (Internet). 2004 (Cited May 20);32(9):e75. https://doi.org/10.1093/nar/gnh067
  78. Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nat Mater. 2005;4(11):826-31. https://doi.org/10.1038/nmat1508
  79. Bunde RL, Jarvi EJ, Rosentreter JJ. Piezoelectric quartz crystal biosensors. Talanta. 1998;46(6):1223-36. https://doi.org/10.1016/S0039-9140(97)00392-5
  80. Sato K, Hosokawa K, Maeda M. Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci. 2007;23(1):17-20. https://doi.org/10.2116/analsci.23.17
  81. Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem. 2003; 75(16):4155-60. https://doi.org/10.1021/ac034256
  82. Ray A, Mitra AK. Nanotechnology in intracellular trafficking, imaging and delivery of therapeutic agents. In. Editor(s): Ashim K. Mitra, Kishore Cholkar, Abhirup Mandal, Micro and Nano Technologies, Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, Elsevier; 2017. 169-88. https://doi.org/10.1016/B978-0-323-42978-8.00008-5
  83. Yan X, Li H, Su X. Review of optical sensors for pesticides. TrAC - Trends Anal. Chem. 2018;103:1-20. https://doi.org/10.1016/j.trac.2018.03.004
  84. Song M, Yang M, Hao J. Pathogenic virus detection by optical nanobiosensors. Cell Reports Physical Science. 2021;2(1). https://doi.org/10.1016/j.xcrp.2020.100288
  85. Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem (Internet). 2016 (Cited Jun 30);60(1):111-20. https://doi.org/10.1042/EBC20150012
  86. Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnology (Internet). 2016 (Cited Jan);34(1):7-25. https://doi.org/10.1016/j.tibtech.2015.09.012
  87. Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA, et al. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol. 2012 Jan;93(1):179-89. https://doi.org/10.1007/s00253-011-3522-x
  88. Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl Mater Interfaces. 2019;11(34):31283-90. https://doi.org/10.1021/acsami.9b08789
  89. Zhang F, Zou M, Chen Y, Li J, Wang Y, Qi X, Xue Q. Lanthanide-labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp. stewartii. Biosens Bioelectron. 2014;51:29-35. https://doi.org/10.1016/j.bios.2013.06.065
  90. Feng M, Kong D, Wang W, Liu L, Song S, Xu C. Development of an immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors. 2015;15(2):4291-301. https://doi.org/10.3390/s150204291
  91. Zhan F, Wang T, Iradukunda L, Zhan J. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Anal Chim Acta (Internet). 2018;(Cited Dec 7);1036:153-61. https://doi.org/10.1016/j.aca.2018.06.083
  92. de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol. 2017;35(12):1169-80. https://doi.org/10.1016/j.tibtech.2017.09.001.
  93. Pöhlmann C, Dieser I, Sprinzl M. A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation. Analyst. 2014;139(5):1063-71. https://doi.org/10.1039/c3an02059b
  94. Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, et al. Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS One (Internet). 2013 (Cited Apr) 26;8(4):e62344. https://doi.org/10.1371/journal.pone.0062344
  95. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032-34. https://doi.org/10.1093/bioinformatics/btv098
  96. Dodig S. Interferences in quantitative immunochemical methods. Biochem Med. 2009;19:50-62. https://doi.org/10.11613/BM.2009.005
  97. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462-93. https://doi.org/10.1021/cr068107d
  98. Sina AA, Carrascosa LG, Palanisamy R, Rauf S, Shiddiky MJ, Trau M. Methylsorb: a simple method for quantifying DNA methylation using DNA-gold affinity interactions. Anal Chem. 2014;86(20):10179-85. https://doi.org/10.1021/ac502214z
  99. Sina AA, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJ, Trau M. Real time and label free profiling of clinically relevant exosomes. Sci Rep. 2016;6:30460. https://doi.org/10.1038/srep30460
  100. Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91-100. https://doi.org/10.1042/EBC20150010
  101. Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43(1):29-41. https://doi.org/10.1007/BF03214964
  102. Terra IAA, Mercante LA, Andre RS, Correa DS. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors (Basel). 2017;7(4):61. https://doi.org/10.3390/bios7040061
  103. Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants. 2019;5(8):856-66. https://doi.org/10.1038/s41477-019-0476-y

Downloads

Download data is not yet available.